re-added ena-components, update interface

This commit is contained in:
Lurkars 2020-10-21 19:18:08 +02:00
parent eff246a080
commit 4029099d2a
40 changed files with 7214 additions and 10 deletions

View File

@ -1,13 +1,5 @@
# The following lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include(FetchContent)
FetchContent_Declare(
esp-ena
GIT_REPOSITORY https://github.com/Lurkars/esp-ena.git
GIT_TAG origin/component
)
FetchContent_MakeAvailable(esp-ena)
set(EXTRA_COMPONENT_DIRS ${esp-ena_SOURCE_DIR}/components)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(esp-ena-device)

View File

@ -3,7 +3,7 @@
Implementation of contact tracing with the Covid-19 Exposure Notification API by Apple and Google on an ESP32 (with [ESP-IDF](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html)).
More information about the Covid-19 Exposure Notification at [Apple](https://www.apple.com/covid19/contacttracing/) and [Google](https://www.google.com/covid19/exposurenotifications/). This is fully compatible with the official API and is meant for people without smartphone or without access to Apples/Googles implementation.
The main source (the Exposure Notification API) is a separate branch in [**component**](https://github.com/Lurkars/esp-ena/tree/component).
The main source (the Exposure Notification API) is also available in a separate branch in [**component**](https://github.com/Lurkars/esp-ena/tree/component).
This implementation fully covers the BLE part including the cryptography specifications needed and the exposure check.

View File

@ -0,0 +1,10 @@
idf_component_register(
SRCS
"ena-binary-export.c"
INCLUDE_DIRS "."
PRIV_REQUIRES
ena
nanopb
EMBED_FILES
"test/export.bin"
)

View File

@ -0,0 +1,90 @@
#include <string.h>
#include <time.h>
#include <limits.h>
#include "esp_err.h"
#include "esp_log.h"
#include "ena-exposure.h"
#include "pb_decode.h"
#include "TemporaryExposureKeyExport.pb.h"
static const char kFileHeader[] = "EK Export v1 ";
static size_t kFileHeaderSize = sizeof(kFileHeader) - 1;
bool ena_binary_export_decode_key_data(pb_istream_t *stream, const pb_field_t *field, void **arg)
{
uint8_t *key_data = (uint8_t *)*arg;
if (!pb_read(stream, key_data, stream->bytes_left))
{
ESP_LOGW(ENA_EXPOSURE_LOG, "Decoding failed: %s\n", PB_GET_ERROR(stream));
return false;
}
return true;
}
bool ena_binary_export_decode_key(pb_istream_t *stream, const pb_field_t *field, void **arg)
{
uint8_t key_data[ENA_KEY_LENGTH] = {0};
TemporaryExposureKey tek = TemporaryExposureKey_init_zero;
tek.key_data = (pb_callback_t){
.funcs.decode = ena_binary_export_decode_key_data,
.arg = &key_data,
};
if (!pb_decode(stream, TemporaryExposureKey_fields, &tek))
{
ESP_LOGW(ENA_EXPOSURE_LOG, "Decoding failed: %s\n", PB_GET_ERROR(stream));
return false;
}
ESP_LOGD(ENA_EXPOSURE_LOG,
"check reported tek: rolling_start_interval_number %d, rolling_period %d, days_since_last_exposure %d, report_type %d, transmission_risk_values %d",
tek.rolling_start_interval_number, tek.rolling_period, tek.days_since_onset_of_symptoms, tek.report_type, tek.transmission_risk_level);
ESP_LOG_BUFFER_HEXDUMP(ENA_EXPOSURE_LOG, &key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ena_temporary_exposure_key_t temporary_exposure_key = {
.transmission_risk_level = tek.transmission_risk_level,
.rolling_start_interval_number = tek.rolling_start_interval_number,
.rolling_period = tek.rolling_period,
.report_type = tek.report_type,
.days_since_onset_of_symptoms = tek.days_since_onset_of_symptoms,
};
memcpy(temporary_exposure_key.key_data, key_data, ENA_KEY_LENGTH);
ena_exposure_check_temporary_exposure_key(temporary_exposure_key);
return true;
}
esp_err_t ena_binary_export_check_export(uint8_t *buf, size_t size)
{
// validate header
if (memcmp(kFileHeader, buf, kFileHeaderSize) != 0)
{
ESP_LOGW(ENA_EXPOSURE_LOG, "Wrong or missing header!");
return ESP_FAIL;
}
TemporaryExposureKeyExport tek_export = TemporaryExposureKeyExport_init_zero;
tek_export.keys = (pb_callback_t){
.funcs.decode = ena_binary_export_decode_key,
};
pb_istream_t stream = pb_istream_from_buffer(&buf[kFileHeaderSize], (size - kFileHeaderSize));
if (!pb_decode(&stream, TemporaryExposureKeyExport_fields, &tek_export))
{
ESP_LOGW(ENA_EXPOSURE_LOG, "Decoding failed: %s\n", PB_GET_ERROR(&stream));
return ESP_FAIL;
}
return ESP_OK;
}

View File

@ -0,0 +1,37 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief decode Exposure Key export and run exposure check
*
*/
#ifndef _ena_BINARY_H_
#define _ena_BINARY_H_
#include <stdio.h>
#include "esp_err.h"
/**
* @brief reads a Temporary Exposue Key Export binary and check for exposures
*
* @param[in] buf the buffer containing the binary data
* @param[in] size the size of the buffer
*
* @return
* esp_err_t status of reading binary
*/
esp_err_t ena_binary_export_check_export(uint8_t *buf, size_t size);
#endif

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,14 @@
idf_component_register(
SRCS
"ena.c"
"ena-beacons.c"
"ena-bluetooth-advertise.c"
"ena-bluetooth-scan.c"
"ena-crypto.c"
"ena-exposure.c"
"ena-storage.c"
INCLUDE_DIRS "include"
PRIV_REQUIRES
spi_flash
mbedtls
bt)

View File

@ -0,0 +1,94 @@
menu "Exposure Notification API"
menu "Storage"
config ENA_STORAGE_DUMP
bool "Dump storage"
default false
help
Dump storage (stored TEKs, temp. beacons and perm. beacons) to serial output after scan.
config ENA_STORAGE_TEK_MAX
int "Max. TEKs"
default 14
help
Defines the maximum number of TEKs to be stored. (Default 14 [14 * 144 => 14 days])
config ENA_STORAGE_EXPOSURE_INFORMATION_MAX
int "Max. exporure information"
default 500
help
Defines the maximum number of exposure information to be stored. (Default 500)
config ENA_STORAGE_TEMP_BEACONS_MAX
int "Max. temporary beacons"
default 1000
help
Defines the maximum number of temporary beacons to be stored. (Default 1000)
config ENA_STORAGE_START_ADDRESS
int "Storage start address"
default 0
help
Defines the start address on partition. (Default 0)
config ENA_STORAGE_PARTITION_NAME
string "Partition name"
default "ena"
help
Name of the partition used for storage. (Default "ena", see partitions.csv)
config ENA_STORAGE_ERASE
bool "Erase storage (!)"
default false
help
Erases the complete(!) partition on startup and reset counters.
endmenu
menu "Scanning"
config ENA_BEACON_TRESHOLD
int "Contact threshold"
default 300
help
Threshold in seconds after a received beacon is stored permanently. (Default 5 minutes)
config ENA_BEACON_CLEANUP_TRESHOLD
int "Clean-Up threshold"
default 14
help
Threshold in days after stored beacons to be removed.
config ENA_SCANNING_TIME
int "Scanning time"
default 30
help
Time in seconds how long a scan should run. (Default 30 seconds)
config ENA_SCANNING_INTERVAL
int "Scanning interval"
default 300
help
Interval in seconds for the next scan to happen. (Default 5 minutes)
endmenu
menu "Advertising"
config ENA_BT_ROTATION_TIMEOUT_INTERVAL
int "Rotation timeout interval"
default 900
help
Base rotation timeout interval in seconds for BT address change & therefore the advertised beacon.(Default 5 minutes)
config ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL
int "Randomize rotation timeout interval"
default 150
help
Range in seconds for randomize the rotation timeout interval. (Default +/- ~2.5 minutes)
config ENA_TEK_ROLLING_PERIOD
int "TEK rolling period"
default 144
help
Defines the TEK rolling period in 10 minute steps. (Default 144 => 24 hours)
endmenu
endmenu

View File

@ -0,0 +1,123 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <time.h>
#include "esp_log.h"
#include "ena-crypto.h"
#include "ena-storage.h"
#include "ena-beacons.h"
static uint32_t temp_beacons_count = 0;
static ena_beacon_t temp_beacons[ENA_STORAGE_TEMP_BEACONS_MAX];
int ena_get_temp_beacon_index(uint8_t *rpi, uint8_t *aem)
{
for (int i = 0; i < temp_beacons_count; i++)
{
if (memcmp(temp_beacons[i].rpi, rpi, sizeof(ENA_KEY_LENGTH)) == 0 &&
memcmp(temp_beacons[i].aem, aem, sizeof(ENA_AEM_METADATA_LENGTH)) == 0)
{
return i;
}
}
return -1;
}
void ena_beacons_temp_refresh(uint32_t unix_timestamp)
{
for (int i = temp_beacons_count - 1; i >= 0; i--)
{
// check for treshold and add permanent beacon
if (temp_beacons[i].timestamp_last - temp_beacons[i].timestamp_first >= ENA_BEACON_TRESHOLD)
{
ESP_LOGD(ENA_BEACON_LOG, "create beacon after treshold");
ESP_LOG_BUFFER_HEXDUMP(ENA_BEACON_LOG, temp_beacons[i].rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ena_storage_add_beacon(&temp_beacons[i]);
ena_storage_remove_temp_beacon(i);
}
else
// delete temp beacons older than two times time window (two times to be safe, one times time window enough?!)
if (unix_timestamp - temp_beacons[i].timestamp_last > (ENA_TIME_WINDOW * 2))
{
ESP_LOGD(ENA_BEACON_LOG, "remove old temporary beacon %u", i);
ena_storage_remove_temp_beacon(i);
}
}
// update beacons
temp_beacons_count = ena_storage_temp_beacons_count();
for (int i = 0; i < temp_beacons_count; i++)
{
ena_storage_get_temp_beacon(i, &temp_beacons[i]);
}
#if (CONFIG_ENA_STORAGE_DUMP)
// DEBUG dump
ena_storage_dump_teks();
ena_storage_dump_exposure_information();
ena_storage_dump_temp_beacons();
ena_storage_dump_beacons();
#endif
}
void ena_beacons_cleanup(uint32_t unix_timestamp)
{
uint32_t count = ena_storage_beacons_count();
ena_beacon_t beacon;
for (int i = count - 1; i >= 0; i--)
{
ena_storage_get_beacon(i, &beacon);
if (((unix_timestamp - beacon.timestamp_last) / (60 * 60 * 24)) > ENA_BEACON_CLEANUP_TRESHOLD)
{
ena_storage_remove_beacon(i);
}
}
}
void ena_beacon(uint32_t unix_timestamp, uint8_t *rpi, uint8_t *aem, int rssi)
{
uint32_t beacon_index = ena_get_temp_beacon_index(rpi, aem);
if (beacon_index == -1)
{
temp_beacons[temp_beacons_count].timestamp_first = unix_timestamp;
memcpy(temp_beacons[temp_beacons_count].rpi, rpi, ENA_KEY_LENGTH);
memcpy(temp_beacons[temp_beacons_count].aem, aem, ENA_AEM_METADATA_LENGTH);
temp_beacons[temp_beacons_count].rssi = rssi;
temp_beacons[temp_beacons_count].timestamp_last = unix_timestamp;
beacon_index = ena_storage_add_temp_beacon(&temp_beacons[temp_beacons_count]);
ESP_LOGD(ENA_BEACON_LOG, "new temporary beacon %d at %u", temp_beacons_count, unix_timestamp);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_BEACON_LOG, "RSSI %d", rssi);
if (beacon_index != temp_beacons_count)
{
ESP_LOGW(ENA_BEACON_LOG, "last temporary beacon index does not match array index!");
}
temp_beacons_count++;
}
else
{
temp_beacons[beacon_index].rssi = (temp_beacons[beacon_index].rssi + rssi) / 2;
temp_beacons[beacon_index].timestamp_last = unix_timestamp;
ESP_LOGD(ENA_BEACON_LOG, "update temporary beacon %d at %u", beacon_index, unix_timestamp);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, temp_beacons[beacon_index].rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, temp_beacons[beacon_index].aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_BEACON_LOG, "RSSI %d", temp_beacons[beacon_index].rssi);
ena_storage_set_temp_beacon(beacon_index, &temp_beacons[beacon_index]);
}
}

View File

@ -0,0 +1,88 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_log.h"
#include "esp_bt.h"
#include "esp_gap_ble_api.h"
#include "ena-crypto.h"
#include "ena-bluetooth-advertise.h"
static esp_ble_adv_params_t ena_adv_params = {
.adv_int_min = 0x140, // 200 ms
.adv_int_max = 0x190, // 250 ms
.adv_type = ADV_TYPE_NONCONN_IND,
.own_addr_type = BLE_ADDR_TYPE_RANDOM,
.channel_map = ADV_CHNL_ALL,
.adv_filter_policy = ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY,
};
void ena_bluetooth_advertise_start(void)
{
ESP_ERROR_CHECK(esp_ble_gap_start_advertising(&ena_adv_params));
}
void ena_bluetooth_advertise_set_payload(uint32_t enin, uint8_t *tek)
{
uint8_t rpik[ENA_KEY_LENGTH] = {0};
uint8_t rpi[ENA_KEY_LENGTH] = {0};
uint8_t aemk[ENA_KEY_LENGTH] = {0};
uint8_t aem[ENA_AEM_METADATA_LENGTH] = {0};
ena_crypto_rpik(rpik, tek);
ena_crypto_rpi(rpi, rpik, enin);
ena_crypto_aemk(aemk, tek);
ena_crypto_aem(aem, aemk, rpi, esp_ble_tx_power_get(ESP_BLE_PWR_TYPE_ADV));
uint8_t adv_raw_data[31];
// FLAG??? skipped on sniffed android packages!?
adv_raw_data[0] = 0x02;
adv_raw_data[1] = 0x01;
adv_raw_data[2] = ENA_BLUETOOTH_TAG_DATA;
// SERVICE UUID
adv_raw_data[3] = 0x03;
adv_raw_data[4] = 0x03;
adv_raw_data[5] = 0x6F;
adv_raw_data[6] = 0xFD;
// SERVICE DATA
adv_raw_data[7] = 0x17;
adv_raw_data[8] = 0x16;
adv_raw_data[9] = 0x6F;
adv_raw_data[10] = 0xFD;
for (int i = 0; i < ENA_KEY_LENGTH; i++)
{
adv_raw_data[i + 11] = rpi[i];
}
for (int i = 0; i < ENA_AEM_METADATA_LENGTH; i++)
{
adv_raw_data[i + ENA_KEY_LENGTH + 11] = aem[i];
}
esp_ble_gap_config_adv_data_raw(adv_raw_data, sizeof(adv_raw_data));
ESP_LOGD(ENA_ADVERTISE_LOG, "payload for ENIN %u", enin);
ESP_LOG_BUFFER_HEXDUMP(ENA_ADVERTISE_LOG, adv_raw_data, sizeof(adv_raw_data), ESP_LOG_DEBUG);
}
void ena_bluetooth_advertise_stop(void)
{
ESP_ERROR_CHECK(esp_ble_gap_stop_advertising());
}

View File

@ -0,0 +1,113 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <time.h>
#include "esp_log.h"
#include "esp_gap_ble_api.h"
#include "ena-crypto.h"
#include "ena-beacons.h"
#include "ena-bluetooth-scan.h"
static int scan_status = ENA_SCAN_STATUS_NOT_SCANNING;
static const uint16_t ENA_SERVICE_UUID = 0xFD6F;
static esp_ble_scan_params_t ena_scan_params = {
.scan_type = BLE_SCAN_TYPE_ACTIVE,
.own_addr_type = BLE_ADDR_TYPE_RANDOM,
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL,
.scan_interval = 0x50, // don't know good parameters, just copied
.scan_window = 0x30, // don't know good parameters, just copied
.scan_duplicate = BLE_SCAN_DUPLICATE_ENABLE,
};
void ena_bluetooth_scan_event_callback(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param)
{
uint32_t unix_timestamp = (uint32_t)time(NULL);
esp_ble_gap_cb_param_t *p = (esp_ble_gap_cb_param_t *)param;
switch (event)
{
case ESP_GAP_BLE_SCAN_START_COMPLETE_EVT:
ESP_LOGD(ENA_SCAN_LOG, "start scanning...");
break;
case ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT:
ESP_LOGD(ENA_SCAN_LOG, "stopped scanning...");
ena_beacons_temp_refresh(unix_timestamp);
break;
case ESP_GAP_BLE_SCAN_RESULT_EVT:
if (p->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT)
{
uint8_t service_uuid_length = 0;
uint8_t *service_uuid_data = esp_ble_resolve_adv_data(p->scan_rst.ble_adv, 0x03, &service_uuid_length);
// check for ENA Service UUID
if (service_uuid_length == sizeof(ENA_SERVICE_UUID) && memcmp(service_uuid_data, &ENA_SERVICE_UUID, service_uuid_length) == 0)
{
uint8_t service_data_length = 0;
uint8_t *service_data = esp_ble_resolve_adv_data(p->scan_rst.ble_adv, 0x16, &service_data_length);
if (service_data_length != (sizeof(ENA_SERVICE_UUID) + ENA_KEY_LENGTH + ENA_AEM_METADATA_LENGTH))
{
ESP_LOGW(ENA_SCAN_LOG, "received ENA Service with invalid payload");
break;
}
uint8_t *rpi = malloc(ENA_KEY_LENGTH);
memcpy(rpi, &service_data[sizeof(ENA_SERVICE_UUID)], ENA_KEY_LENGTH);
uint8_t *aem = malloc(ENA_AEM_METADATA_LENGTH);
memcpy(aem, &service_data[sizeof(ENA_SERVICE_UUID) + ENA_KEY_LENGTH], ENA_AEM_METADATA_LENGTH);
ena_beacon(unix_timestamp, rpi, aem, p->scan_rst.rssi);
free(rpi);
free(aem);
}
}
else if (p->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_CMPL_EVT)
{
scan_status = ENA_SCAN_STATUS_NOT_SCANNING;
ena_beacons_temp_refresh(unix_timestamp);
ESP_LOGD(ENA_SCAN_LOG, "finished scanning...");
}
break;
default:
// nothing
break;
}
}
void ena_bluetooth_scan_init(void)
{
ESP_ERROR_CHECK(esp_ble_gap_set_scan_params(&ena_scan_params));
ESP_ERROR_CHECK(esp_ble_gap_register_callback(ena_bluetooth_scan_event_callback));
// init temporary beacons
ena_beacons_temp_refresh((uint32_t)time(NULL));
}
void ena_bluetooth_scan_start(uint32_t duration)
{
scan_status = ENA_SCAN_STATUS_SCANNING;
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(duration));
}
void ena_bluetooth_scan_stop(void)
{
scan_status = ENA_SCAN_STATUS_WAITING;
ESP_ERROR_CHECK(esp_ble_gap_stop_scanning());
}
int ena_bluetooth_scan_get_status(void)
{
return scan_status;
}

View File

@ -0,0 +1,96 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mbedtls/md.h"
#include "mbedtls/aes.h"
#include "mbedtls/hkdf.h"
#include "mbedtls/entropy.h"
#include "mbedtls/ctr_drbg.h"
#include "esp_log.h"
#include "ena-crypto.h"
#define ESP_CRYPTO_LOG "ESP-CRYPTO"
static mbedtls_ctr_drbg_context ctr_drbg;
void ena_crypto_init(void)
{
mbedtls_entropy_context entropy;
uint8_t pers[] = "Exposure Notifcation API esp32";
int ret;
mbedtls_entropy_init(&entropy);
mbedtls_ctr_drbg_init(&ctr_drbg);
if ((ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, pers, sizeof(pers))) != 0)
{
ESP_LOGE(ESP_CRYPTO_LOG, " failed\n ! mbedtls_ctr_drbg_init returned -0x%04x\n", -ret);
}
}
uint32_t ena_crypto_enin(uint32_t unix_epoch_time)
{
return unix_epoch_time / ENA_TIME_WINDOW;
}
void ena_crypto_tek(uint8_t *tek)
{
int ret;
if ((ret = mbedtls_ctr_drbg_random(&ctr_drbg, tek, ENA_KEY_LENGTH)) != 0)
{
ESP_LOGE(ESP_CRYPTO_LOG, " failed\n ! mbedtls_ctr_drbg_random returned -0x%04x\n", -ret);
}
}
void ena_crypto_rpik(uint8_t *rpik, uint8_t *tek)
{
const uint8_t rpik_info[] = "EN-RPIK";
mbedtls_hkdf(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), NULL, 0, tek, ENA_KEY_LENGTH, rpik_info, sizeof(rpik_info), rpik, ENA_KEY_LENGTH);
}
void ena_crypto_rpi(uint8_t *rpi, uint8_t *rpik, uint32_t enin)
{
uint8_t padded_data[] = "EN-RPI";
padded_data[12] = (enin & 0x000000ff);
padded_data[13] = (enin & 0x0000ff00) >> 8;
padded_data[14] = (enin & 0x00ff0000) >> 16;
padded_data[15] = (enin & 0xff000000) >> 24;
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
mbedtls_aes_setkey_enc(&aes, rpik, ENA_KEY_LENGTH * 8);
mbedtls_aes_crypt_ecb(&aes, MBEDTLS_AES_ENCRYPT, padded_data, rpi);
mbedtls_aes_free(&aes);
}
void ena_crypto_aemk(uint8_t *aemk, uint8_t *tek)
{
uint8_t aemkInfo[] = "EN-AEMK";
mbedtls_hkdf(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), NULL, 0, tek, ENA_KEY_LENGTH, aemkInfo, sizeof(aemkInfo), aemk, ENA_KEY_LENGTH);
}
void ena_crypto_aem(uint8_t *aem, uint8_t *aemk, uint8_t *rpi, uint8_t power_level)
{
uint8_t metadata[ENA_AEM_METADATA_LENGTH];
metadata[0] = 0b01000000;
metadata[1] = power_level;
size_t count = 0;
uint8_t sb[16] = {0};
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
mbedtls_aes_setkey_enc(&aes, aemk, ENA_KEY_LENGTH * 8);
mbedtls_aes_crypt_ctr(&aes, ENA_AEM_METADATA_LENGTH, &count, rpi, sb, metadata, aem);
mbedtls_aes_free(&aes);
}

View File

@ -0,0 +1,327 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <time.h>
#include <limits.h>
#include "esp_err.h"
#include "esp_log.h"
#include "ena-crypto.h"
#include "ena-storage.h"
#include "ena-beacons.h"
#include "ena-exposure.h"
static ena_exposure_summary_t *current_summary;
static ena_exposure_config_t DEFAULT_ENA_EXPOSURE_CONFIG = {
// transmission_risk_values
{
MINIMAL, // UNKNOWN
LOW, // CONFIRMED_TEST_LOW
MEDIUM, // CONFIRMED_TEST_STANDARD
HIGH, // CONFIRMED_TEST_HIGH
VERY_HIGH, // CONFIRMED_CLINICAL_DIAGNOSIS
VERY_LOW, // SELF_REPORT
ZERO, // NEGATIVE
MINIMAL // RECURSIVE
},
// duration_risk_values
{
MINIMAL, // D = 0 min
MINIMAL, // D <= 5 min
MEDIUM, // D <= 10 min
VERY_HIGH, // D <= 15 min
VERY_HIGH, // D <= 20 min
MAXIMUM, // D <= 25 min
MAXIMUM, // D <= 30 min
MAXIMUM // D > 30 min
},
// days_risk_values
{
MINIMAL, // >= 14 days
VERY_LOW, // 12-13 days
VERY_LOW, // 10-11 days
MEDIUM, // 8-9 days
HIGH, // 6-7 days
MAXIMUM, // 4-5 days
MAXIMUM, // 2-3 days
MAXIMUM // 0-1 days
},
// attenuation_risk_values
{
MINIMAL, // A > 73 dB
MINIMAL, // 73 >= A > 63
MINIMAL, // 63 >= A > 61
MAXIMUM, // 51 >= A > 33
MAXIMUM, // 33 >= A > 27
MAXIMUM, // 27 >= A > 15
MAXIMUM, // 15 >= A > 10
MAXIMUM // A <= 10
},
};
int ena_exposure_transmission_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params)
{
return config->transmission_risk_values[params.report_type];
}
int ena_exposure_duration_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params)
{
// calc duration level
int duration_level = MINUTES_0;
if (params.duration > 0)
{
if (params.duration <= 5)
{
duration_level = MINUTES_5;
}
else if (params.duration <= 10)
{
duration_level = MINUTES_10;
}
if (params.duration <= 15)
{
duration_level = MINUTES_15;
}
if (params.duration <= 20)
{
duration_level = MINUTES_20;
}
if (params.duration <= 25)
{
duration_level = MINUTES_25;
}
if (params.duration <= 30)
{
duration_level = MINUTES_30;
}
else
{
duration_level = MINUTES_LONGER;
}
}
return config->duration_risk_values[duration_level];
}
int ena_exposure_days_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params)
{
// calc days level
int days_level = DAYS_14;
if (params.days < 2)
{
days_level = DAYS_0;
}
else if (params.days < 4)
{
days_level = DAYS_3;
}
else if (params.days < 6)
{
days_level = DAYS_5;
}
else if (params.days < 8)
{
days_level = DAYS_7;
}
else if (params.days < 10)
{
days_level = DAYS_9;
}
else if (params.days < 12)
{
days_level = DAYS_11;
}
else if (params.days < 14)
{
days_level = DAYS_13;
}
return config->days_risk_values[days_level];
}
int ena_exposure_attenuation_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params)
{
// calc attenuation level
int attenuation_level = ATTENUATION_73;
if (params.attenuation <= 10)
{
attenuation_level = ATTENUATION_LOWER;
}
else if (params.attenuation <= 15)
{
attenuation_level = ATTENUATION_10;
}
else if (params.attenuation <= 27)
{
attenuation_level = ATTENUATION_15;
}
else if (params.attenuation <= 33)
{
attenuation_level = ATTENUATION_27;
}
else if (params.attenuation <= 51)
{
attenuation_level = ATTENUATION_33;
}
else if (params.attenuation <= 63)
{
attenuation_level = ATTENUATION_51;
}
else if (params.attenuation <= 73)
{
attenuation_level = ATTENUATION_63;
}
return config->attenuation_risk_values[attenuation_level];
}
int ena_exposure_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params)
{
int score = 1;
score *= ena_exposure_transmission_risk_score(config, params);
score *= ena_exposure_duration_risk_score(config, params);
score *= ena_exposure_days_risk_score(config, params);
score *= ena_exposure_attenuation_risk_score(config, params);
if (score > 255)
{
score = 255;
}
return score;
}
void ena_exposure_summary(ena_exposure_config_t *config)
{
uint32_t count = ena_storage_exposure_information_count();
uint32_t current_time = (uint32_t)time(NULL);
if (current_summary == NULL)
{
current_summary = malloc(sizeof(ena_exposure_summary_t));
}
current_summary->last_update = ena_storage_read_last_exposure_date();
current_summary->days_since_last_exposure = INT_MAX;
current_summary->max_risk_score = 0;
current_summary->risk_score_sum = 0;
current_summary->num_exposures = count;
if (count == 0)
{
current_summary->days_since_last_exposure = -1;
}
ena_exposure_information_t exposure_info;
ena_exposure_parameter_t params;
for (int i = 0; i < count; i++)
{
ena_storage_get_exposure_information(i, &exposure_info);
params.days = (current_time - exposure_info.day) / (60 * 60 * 24); // difference in days
if (params.days < current_summary->days_since_last_exposure)
{
current_summary->days_since_last_exposure = params.days;
}
params.duration = exposure_info.duration_minutes;
params.attenuation = exposure_info.typical_attenuation;
int score = ena_exposure_risk_score(config, params);
if (score > current_summary->max_risk_score)
{
current_summary->max_risk_score = score;
}
current_summary->risk_score_sum += score;
}
}
ena_exposure_summary_t *ena_exposure_current_summary(void)
{
if (current_summary == NULL)
{
ena_exposure_summary(ena_exposure_default_config());
}
return current_summary;
}
ena_exposure_config_t *ena_exposure_default_config(void)
{
return &DEFAULT_ENA_EXPOSURE_CONFIG;
}
void ena_exposure_check(ena_beacon_t beacon, ena_temporary_exposure_key_t temporary_exposure_key)
{
uint32_t timestamp_day_start = temporary_exposure_key.rolling_start_interval_number * ENA_TIME_WINDOW;
uint32_t timestamp_day_end = temporary_exposure_key.rolling_start_interval_number * ENA_TIME_WINDOW + temporary_exposure_key.rolling_period * ENA_TIME_WINDOW;
if (beacon.timestamp_first > timestamp_day_start && beacon.timestamp_last < timestamp_day_end)
{
ESP_LOGD(ENA_EXPOSURE_LOG, "matched timestamps!");
ESP_LOGD(ENA_EXPOSURE_LOG, "Beacon: %u,%u,%d", beacon.timestamp_first, beacon.timestamp_last, beacon.rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_EXPOSURE_LOG, beacon.rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_EXPOSURE_LOG, beacon.aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_EXPOSURE_LOG, "Key: %u,%u,%d", timestamp_day_start, timestamp_day_end, temporary_exposure_key.rolling_period);
ESP_LOG_BUFFER_HEXDUMP(ENA_EXPOSURE_LOG, temporary_exposure_key.key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
bool match = false;
ena_exposure_information_t exposure_info;
exposure_info.duration_minutes = 0;
exposure_info.min_attenuation = INT_MAX;
exposure_info.typical_attenuation = 0;
exposure_info.report_type = temporary_exposure_key.report_type;
uint8_t rpi[ENA_KEY_LENGTH];
uint8_t rpik[ENA_KEY_LENGTH];
ena_crypto_rpik(rpik, temporary_exposure_key.key_data);
for (int i = 0; i < temporary_exposure_key.rolling_period; i++)
{
ena_crypto_rpi(rpi, rpik, temporary_exposure_key.rolling_start_interval_number + i);
if (memcmp(beacon.rpi, rpi, sizeof(ENA_KEY_LENGTH)) == 0)
{
match = true;
exposure_info.day = timestamp_day_start;
exposure_info.duration_minutes += (ENA_BEACON_TRESHOLD / 60);
exposure_info.typical_attenuation = (exposure_info.typical_attenuation + beacon.rssi) / 2;
if (beacon.rssi < exposure_info.min_attenuation)
{
exposure_info.min_attenuation = beacon.rssi;
}
}
}
if (match)
{
ena_storage_add_exposure_information(&exposure_info);
}
}
}
void ena_exposure_check_temporary_exposure_key(ena_temporary_exposure_key_t temporary_exposure_key)
{
ena_beacon_t beacon;
uint32_t beacons_count = ena_storage_beacons_count();
for (int y = 0; y < beacons_count; y++)
{
ena_storage_get_beacon(y, &beacon);
ena_exposure_check(beacon, temporary_exposure_key);
}
}

View File

@ -0,0 +1,504 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "esp_partition.h"
#include "ena-storage.h"
#include "ena-crypto.h"
#define BLOCK_SIZE (4096)
const int ENA_STORAGE_LAST_EXPOSURE_DATE_ADDRESS = (ENA_STORAGE_START_ADDRESS);
const int ENA_STORAGE_TEK_COUNT_ADDRESS = (ENA_STORAGE_LAST_EXPOSURE_DATE_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_TEK_START_ADDRESS = (ENA_STORAGE_TEK_COUNT_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS = (ENA_STORAGE_TEK_START_ADDRESS + sizeof(ena_tek_t) * ENA_STORAGE_TEK_MAX);
const int ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS = (ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS = (ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS + sizeof(ena_exposure_information_t) * ENA_STORAGE_EXPOSURE_INFORMATION_MAX);
const int ENA_STORAGE_TEMP_BEACONS_START_ADDRESS = (ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_BEACONS_COUNT_ADDRESS = (ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + sizeof(ena_beacon_t) * ENA_STORAGE_TEMP_BEACONS_MAX);
const int ENA_STORAGE_BEACONS_START_ADDRESS = (ENA_STORAGE_BEACONS_COUNT_ADDRESS + sizeof(uint32_t));
void ena_storage_read(size_t address, void *data, size_t size)
{
const esp_partition_t *partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME);
assert(partition);
ESP_ERROR_CHECK(esp_partition_read(partition, address, data, size));
vTaskDelay(1);
ESP_LOGD(ENA_STORAGE_LOG, "read data at %u", address);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, data, size, ESP_LOG_DEBUG);
}
void ena_storage_write(size_t address, void *data, size_t size)
{
const int block_num = address / BLOCK_SIZE;
// check for overflow
if (address + size <= (block_num + 1) * BLOCK_SIZE)
{
const esp_partition_t *partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME);
assert(partition);
const int block_start = block_num * BLOCK_SIZE;
const int block_address = address - block_start;
void *buffer = malloc(BLOCK_SIZE);
if (buffer == NULL)
{
ESP_LOGE(ENA_STORAGE_LOG, "Warning %s malloc low memory", "buffer");
return;
}
ESP_LOGD(ENA_STORAGE_LOG, "read block %d buffer: start %d size %u", block_num, block_start, BLOCK_SIZE);
ESP_ERROR_CHECK(esp_partition_read(partition, block_start, buffer, BLOCK_SIZE));
vTaskDelay(1);
ESP_ERROR_CHECK(esp_partition_erase_range(partition, block_start, BLOCK_SIZE));
memcpy((buffer + block_address), data, size);
ESP_ERROR_CHECK(esp_partition_write(partition, block_start, buffer, BLOCK_SIZE));
free(buffer);
ESP_LOGD(ENA_STORAGE_LOG, "write data at %u", address);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, data, size, ESP_LOG_DEBUG);
}
else
{
ESP_LOGD(ENA_STORAGE_LOG, "overflow block at address %u with size %d (block %d)", address, size, block_num);
const size_t block2_address = (block_num + 1) * BLOCK_SIZE;
const size_t data2_size = address + size - block2_address;
const size_t data1_size = size - data2_size;
ESP_LOGD(ENA_STORAGE_LOG, "block1_address %d, block1_size %d (block %d)", address, data1_size, block_num);
ESP_LOGD(ENA_STORAGE_LOG, "block2_address %d, block2_size %d (block %d)", block2_address, data2_size, block_num + 1);
void *data1 = malloc(data1_size);
memcpy(data1, data, data1_size);
ena_storage_write(address, data1, data1_size);
free(data1);
void *data2 = malloc(data2_size);
memcpy(data2, (data + data1_size), data2_size);
ena_storage_write(block2_address, data2, data2_size);
free(data2);
}
}
void ena_storage_erase(size_t address, size_t size)
{
const int block_num = address / BLOCK_SIZE;
// check for overflow
if (address + size <= (block_num + 1) * BLOCK_SIZE)
{
uint8_t *zeros = calloc(size, sizeof(uint8_t));
ena_storage_write(address, zeros, size);
free(zeros);
}
else
{
const size_t block2_address = (block_num + 1) * BLOCK_SIZE;
const size_t data2_size = address + size - block2_address;
const size_t data1_size = size - data2_size;
uint8_t *zeros = calloc(data1_size, sizeof(uint8_t));
ena_storage_write(address, zeros, data1_size);
free(zeros);
ena_storage_erase(block2_address, data2_size);
}
}
void ena_storage_shift_delete(size_t address, size_t end_address, size_t size)
{
int block_num_start = address / BLOCK_SIZE;
// check for overflow
if (address + size <= (block_num_start + 1) * BLOCK_SIZE)
{
const esp_partition_t *partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME);
assert(partition);
int block_num_end = end_address / BLOCK_SIZE;
size_t block_start = address - block_num_start * BLOCK_SIZE;
while (block_num_end >= block_num_start)
{
void *buffer = malloc(BLOCK_SIZE);
ESP_ERROR_CHECK(esp_partition_read(partition, block_num_start * BLOCK_SIZE, buffer, BLOCK_SIZE));
vTaskDelay(1);
// shift inside buffer
ESP_LOGD(ENA_STORAGE_LOG, "shift block %d from %u to %u with size %u", block_num_start, (block_start + size), block_start, (BLOCK_SIZE - block_start - size));
memcpy((buffer + block_start), (buffer + block_start + size), BLOCK_SIZE - block_start - size);
if (block_num_end > block_num_start)
{
void *buffer_next_block = malloc(BLOCK_SIZE);
ESP_ERROR_CHECK(esp_partition_read(partition, (block_num_start + 1) * BLOCK_SIZE, buffer_next_block, BLOCK_SIZE));
vTaskDelay(1);
// shift from next block
ESP_LOGD(ENA_STORAGE_LOG, "shift next block size %u", size);
memcpy((buffer + BLOCK_SIZE - size), buffer_next_block, size);
free(buffer_next_block);
}
ESP_ERROR_CHECK(esp_partition_erase_range(partition, block_num_start * BLOCK_SIZE, BLOCK_SIZE));
ESP_ERROR_CHECK(esp_partition_write(partition, block_num_start * BLOCK_SIZE, buffer, BLOCK_SIZE));
free(buffer);
block_num_start++;
block_start = 0;
}
}
else
{
ESP_LOGD(ENA_STORAGE_LOG, "overflow block at address %u with size %d (block %d)", address, size, block_num_start);
const size_t block1_address = address;
const size_t block2_address = (block_num_start + 1) * BLOCK_SIZE;
const size_t data2_size = address + size - block2_address;
const size_t data1_size = size - data2_size;
ena_storage_shift_delete(block1_address, block2_address, data1_size);
ena_storage_shift_delete(block2_address, end_address - data1_size, data2_size);
}
}
uint32_t ena_storage_read_last_exposure_date(void)
{
uint32_t timestamp = 0;
ena_storage_read(ENA_STORAGE_LAST_EXPOSURE_DATE_ADDRESS, &timestamp, sizeof(uint32_t));
return timestamp;
}
void ena_storage_write_last_exposure_date(uint32_t timestamp)
{
ena_storage_write(ENA_STORAGE_LAST_EXPOSURE_DATE_ADDRESS, &timestamp, sizeof(uint32_t));
}
uint32_t ena_storage_read_last_tek(ena_tek_t *tek)
{
uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
if (tek_count < 1)
{
return 0;
}
uint8_t index = (tek_count % ENA_STORAGE_TEK_MAX) - 1;
ena_storage_read(ENA_STORAGE_TEK_START_ADDRESS + index * sizeof(ena_tek_t), tek, sizeof(ena_tek_t));
ESP_LOGD(ENA_STORAGE_LOG, "read last tek %u:", tek->enin);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, tek->key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
return tek_count;
}
void ena_storage_write_tek(ena_tek_t *tek)
{
uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
uint8_t index = (tek_count % ENA_STORAGE_TEK_MAX);
ena_storage_write(ENA_STORAGE_TEK_START_ADDRESS + index * sizeof(ena_tek_t), tek, sizeof(ena_tek_t));
tek_count++;
ena_storage_write(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "write tek: ENIN %u", tek->enin);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, tek->key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
}
uint32_t ena_storage_exposure_information_count(void)
{
uint32_t count = 0;
ena_storage_read(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "read exposure information count: %u", count);
return count;
}
void ena_storage_get_exposure_information(uint32_t index, ena_exposure_information_t *exposure_info)
{
ena_storage_read(ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS + index * sizeof(ena_exposure_information_t), exposure_info, sizeof(ena_exposure_information_t));
ESP_LOGD(ENA_STORAGE_LOG, "read exporuse information: day %u, duration %d", exposure_info->day, exposure_info->duration_minutes);
}
void ena_storage_add_exposure_information(ena_exposure_information_t *exposure_info)
{
uint32_t count = ena_storage_exposure_information_count();
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS + count * sizeof(ena_exposure_information_t), exposure_info, sizeof(ena_exposure_information_t));
count++;
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "write exposure info: day %u, duration %d", exposure_info->day, exposure_info->duration_minutes);
}
uint32_t ena_storage_temp_beacons_count(void)
{
uint32_t count = 0;
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "read temp beacons count: %u", count);
return count;
}
void ena_storage_get_temp_beacon(uint32_t index, ena_beacon_t *beacon)
{
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
ESP_LOGD(ENA_STORAGE_LOG, "read temp beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
}
uint32_t ena_storage_add_temp_beacon(ena_beacon_t *beacon)
{
uint32_t count = ena_storage_temp_beacons_count();
// overwrite older temporary beacons?!
uint8_t index = count % ENA_STORAGE_TEMP_BEACONS_MAX;
ena_storage_set_temp_beacon(index, beacon);
ESP_LOGD(ENA_STORAGE_LOG, "add temp beacon at %u: first %u, last %u and rssi %d", index, beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
count++;
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
return count - 1;
}
void ena_storage_set_temp_beacon(uint32_t index, ena_beacon_t *beacon)
{
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
ESP_LOGD(ENA_STORAGE_LOG, "set temp beacon at %u: first %u, last %u and rssi %d", index, beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
}
void ena_storage_remove_temp_beacon(uint32_t index)
{
uint32_t count = ena_storage_temp_beacons_count();
size_t address_from = ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t);
size_t address_to = ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + count * sizeof(ena_beacon_t);
ena_storage_shift_delete(address_from, address_to, sizeof(ena_beacon_t));
count--;
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "remove temp beacon: %u", index);
}
uint32_t ena_storage_beacons_count(void)
{
uint32_t count = 0;
ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "read contancts count: %u", count);
return count;
}
void ena_storage_get_beacon(uint32_t index, ena_beacon_t *beacon)
{
ena_storage_read(ENA_STORAGE_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
ESP_LOGD(ENA_STORAGE_LOG, "read beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
}
void ena_storage_add_beacon(ena_beacon_t *beacon)
{
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
uint32_t count = ena_storage_beacons_count();
ena_storage_write(ENA_STORAGE_BEACONS_START_ADDRESS + count * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
count++;
ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "write beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
}
void ena_storage_remove_beacon(uint32_t index)
{
uint32_t count = ena_storage_beacons_count();
size_t address_from = ENA_STORAGE_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t);
size_t address_to = ENA_STORAGE_BEACONS_START_ADDRESS + count * sizeof(ena_beacon_t);
ena_storage_shift_delete(address_from, address_to, sizeof(ena_beacon_t));
count--;
ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "remove beacon: %u", index);
}
void ena_storage_erase_all(void)
{
const esp_partition_t *partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME);
assert(partition);
ESP_ERROR_CHECK(esp_partition_erase_range(partition, 0, partition->size));
ESP_LOGI(ENA_STORAGE_LOG, "erased partition %s!", ENA_STORAGE_PARTITION_NAME);
uint32_t count = 0;
ena_storage_write(ENA_STORAGE_LAST_EXPOSURE_DATE_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_TEK_COUNT_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
}
void ena_storage_erase_tek(void)
{
uint32_t count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEK_MAX;
if (count < ENA_STORAGE_TEK_MAX)
{
stored = count;
}
size_t size = sizeof(uint32_t) + stored * sizeof(ena_tek_t);
ena_storage_erase(ENA_STORAGE_TEK_COUNT_ADDRESS, size);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d teks (size %u at %u)", stored, size, ENA_STORAGE_TEK_COUNT_ADDRESS);
}
void ena_storage_erase_exposure_information(void)
{
uint32_t count = ena_storage_exposure_information_count();
uint32_t stored = ENA_STORAGE_EXPOSURE_INFORMATION_MAX;
if (count < ENA_STORAGE_EXPOSURE_INFORMATION_MAX)
{
stored = count;
}
size_t size = sizeof(uint32_t) + stored * sizeof(ena_exposure_information_t);
ena_storage_erase(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, size);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d exposure information (size %u at %u)", stored, size, ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS);
}
void ena_storage_erase_temporary_beacon(void)
{
uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEMP_BEACONS_MAX;
if (beacon_count < ENA_STORAGE_TEMP_BEACONS_MAX)
{
stored = beacon_count;
}
size_t size = sizeof(uint32_t) + stored * sizeof(ena_beacon_t);
ena_storage_erase(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, size);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d temporary beacons (size %u at %u)", stored, size, ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS);
}
void ena_storage_erase_beacon(void)
{
uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
size_t size = sizeof(uint32_t) + beacon_count * sizeof(ena_beacon_t);
ena_storage_erase(ENA_STORAGE_BEACONS_COUNT_ADDRESS, size);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d beacons (size %u at %u)", beacon_count, size, ENA_STORAGE_BEACONS_COUNT_ADDRESS);
}
void ena_storage_dump_hash_array(uint8_t *data, size_t size)
{
for (int i = 0; i < size; i++)
{
if (i == 0)
{
printf("%02x", data[i]);
}
else
{
printf(" %02x", data[i]);
}
}
}
void ena_storage_dump_teks(void)
{
ena_tek_t tek;
uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEK_MAX;
if (tek_count < ENA_STORAGE_TEK_MAX)
{
stored = tek_count;
}
ESP_LOGD(ENA_STORAGE_LOG, "%u TEKs (%u stored)\n", tek_count, stored);
printf("#,enin,tek,rolling_period\n");
for (int i = 0; i < stored; i++)
{
size_t address = ENA_STORAGE_TEK_START_ADDRESS + i * sizeof(ena_tek_t);
ena_storage_read(address, &tek, sizeof(ena_tek_t));
printf("%d,%u,", i, tek.enin);
ena_storage_dump_hash_array(tek.key_data, ENA_KEY_LENGTH);
printf(",%u\n", tek.rolling_period);
}
}
void ena_storage_dump_exposure_information(void)
{
ena_exposure_information_t exposure_info;
uint32_t exposure_information_count = ena_storage_exposure_information_count();
uint32_t stored = ENA_STORAGE_EXPOSURE_INFORMATION_MAX;
if (exposure_information_count < ENA_STORAGE_EXPOSURE_INFORMATION_MAX)
{
stored = exposure_information_count;
}
ESP_LOGD(ENA_STORAGE_LOG, "%u exposure information (%u stored)\n", exposure_information_count, stored);
printf("#,day,typical_attenuation,min_attenuation,duration_minutes,report_type\n");
for (int i = 0; i < stored; i++)
{
size_t address = ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS + i * sizeof(ena_exposure_information_t);
ena_storage_read(address, &exposure_info, sizeof(ena_exposure_information_t));
printf("%d,%u,%d,%d,%d,%d\n", i, exposure_info.day, exposure_info.typical_attenuation, exposure_info.min_attenuation, exposure_info.duration_minutes, exposure_info.report_type);
}
}
void ena_storage_dump_temp_beacons(void)
{
ena_beacon_t beacon;
uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEMP_BEACONS_MAX;
if (beacon_count < ENA_STORAGE_TEMP_BEACONS_MAX)
{
stored = beacon_count;
}
ESP_LOGD(ENA_STORAGE_LOG, "%u temporary beacons (%u stored)\n", beacon_count, stored);
printf("#,timestamp_first,timestamp_last,rpi,aem,rssi\n");
for (int i = 0; i < stored; i++)
{
ena_storage_get_temp_beacon(i, &beacon);
printf("%d,%u,%u,", i, beacon.timestamp_first, beacon.timestamp_last);
ena_storage_dump_hash_array(beacon.rpi, ENA_KEY_LENGTH);
printf(",");
ena_storage_dump_hash_array(beacon.aem, ENA_AEM_METADATA_LENGTH);
printf(",%d\n", beacon.rssi);
}
}
void ena_storage_dump_beacons(void)
{
ena_beacon_t beacon;
uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "%u beacons\n", beacon_count);
printf("#,timestamp_first,timestamp_last,rpi,aem,rssi\n");
for (int i = 0; i < beacon_count; i++)
{
ena_storage_get_beacon(i, &beacon);
printf("%d,%u,%u,", i, beacon.timestamp_first, beacon.timestamp_last);
ena_storage_dump_hash_array(beacon.rpi, ENA_KEY_LENGTH);
printf(",");
ena_storage_dump_hash_array(beacon.aem, ENA_AEM_METADATA_LENGTH);
printf(",%d\n", beacon.rssi);
}
}

185
components/ena/ena.c Normal file
View File

@ -0,0 +1,185 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <time.h>
#include "esp_system.h"
#include "esp_log.h"
#include "esp_bt.h"
#include "esp_bt_main.h"
#include "esp_gap_ble_api.h"
#include "nvs_flash.h"
#include "ena-crypto.h"
#include "ena-storage.h"
#include "ena-bluetooth-scan.h"
#include "ena-bluetooth-advertise.h"
#include "ena-beacons.h"
#include "ena.h"
static ena_tek_t last_tek; // last ENIN
static uint32_t next_rpi_timestamp; // next rpi
void ena_next_rpi_timestamp(uint32_t timestamp)
{
int random_interval = esp_random() % (2 * ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL);
if (random_interval > ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL)
{
random_interval = ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL - random_interval;
}
next_rpi_timestamp = timestamp + ENA_BT_ROTATION_TIMEOUT_INTERVAL + random_interval;
ESP_LOGD(ENA_LOG, "next rpi at %u (%u from %u)", next_rpi_timestamp, (ENA_BT_ROTATION_TIMEOUT_INTERVAL + random_interval), timestamp);
}
void ena_run(void)
{
static uint32_t unix_timestamp = 0;
static uint32_t current_enin = 0;
unix_timestamp = (uint32_t)time(NULL);
current_enin = ena_crypto_enin(unix_timestamp);
if (current_enin - last_tek.enin >= last_tek.rolling_period)
{
ena_crypto_tek(last_tek.key_data);
last_tek.enin = current_enin;
// validity only to next day 00:00
last_tek.rolling_period = ENA_TEK_ROLLING_PERIOD - (last_tek.enin % ENA_TEK_ROLLING_PERIOD);
ena_storage_write_tek(&last_tek);
// clean up old beacons
ena_beacons_cleanup(unix_timestamp);
}
// change RPI
if (unix_timestamp >= next_rpi_timestamp)
{
if (ena_bluetooth_scan_get_status() == ENA_SCAN_STATUS_SCANNING)
{
ena_bluetooth_scan_stop();
}
ena_bluetooth_advertise_stop();
ena_bluetooth_advertise_set_payload(current_enin, last_tek.key_data);
ena_bluetooth_advertise_start();
if (ena_bluetooth_scan_get_status() == ENA_SCAN_STATUS_WAITING)
{
ena_bluetooth_scan_start(ENA_SCANNING_TIME);
}
ena_next_rpi_timestamp(unix_timestamp);
}
// scan
if (unix_timestamp % ENA_SCANNING_INTERVAL == 0 && ena_bluetooth_scan_get_status() == ENA_SCAN_STATUS_NOT_SCANNING)
{
ena_bluetooth_scan_start(ENA_SCANNING_TIME);
}
}
void ena_start(void)
{
#if (CONFIG_ENA_STORAGE_ERASE)
ena_storage_erase_all();
#endif
if (ena_storage_read_last_exposure_date() == 0xFFFFFFFF)
{
ena_storage_erase_all();
}
// init NVS for BLE
esp_err_t ret;
ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND)
{
ESP_ERROR_CHECK(nvs_flash_erase());
ESP_ERROR_CHECK(nvs_flash_init());
}
// init BLE
if (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE)
{
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_bt_controller_init(&bt_cfg));
while (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE)
{
}
}
if (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_INITED)
{
ESP_ERROR_CHECK(esp_bt_controller_enable(ESP_BT_MODE_BLE));
}
if (esp_bluedroid_get_status() == ESP_BLUEDROID_STATUS_UNINITIALIZED)
{
ESP_ERROR_CHECK(esp_bluedroid_init());
}
if (esp_bluedroid_get_status() == ESP_BLUEDROID_STATUS_INITIALIZED)
{
ESP_ERROR_CHECK(esp_bluedroid_enable());
}
// new bluetooth address nesseccary?
uint8_t bt_address[ESP_BD_ADDR_LEN];
esp_fill_random(bt_address, ESP_BD_ADDR_LEN);
bt_address[0] |= 0xC0;
ESP_ERROR_CHECK(esp_ble_gap_set_rand_addr(bt_address));
ESP_ERROR_CHECK(esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_DEFAULT, ESP_PWR_LVL_P9));
ESP_ERROR_CHECK(esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_ADV, ESP_PWR_LVL_P9));
ESP_ERROR_CHECK(esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_SCAN, ESP_PWR_LVL_P9));
ESP_ERROR_CHECK(esp_ble_gap_config_local_privacy(true));
// init ENA
ena_crypto_init();
uint32_t unix_timestamp = (uint32_t)time(NULL);
uint32_t current_enin = ena_crypto_enin(unix_timestamp);
uint32_t tek_count = ena_storage_read_last_tek(&last_tek);
ena_next_rpi_timestamp(unix_timestamp);
// read last TEK or create new
if (tek_count == 0 || (current_enin - last_tek.enin) >= last_tek.rolling_period)
{
ena_crypto_tek(last_tek.key_data);
last_tek.enin = ena_crypto_enin(unix_timestamp);
// validity only to next day 00:00
last_tek.rolling_period = ENA_TEK_ROLLING_PERIOD - (last_tek.enin % ENA_TEK_ROLLING_PERIOD);
ena_storage_write_tek(&last_tek);
}
// init scan
ena_bluetooth_scan_init();
// init and start advertising
ena_bluetooth_advertise_set_payload(current_enin, last_tek.key_data);
ena_bluetooth_advertise_start();
// initial scan on every start
ena_bluetooth_scan_start(ENA_SCANNING_TIME);
// what is a good stack size here?
// xTaskCreate(&ena_run, "ena_run", ENA_RAM, NULL, 5, NULL);
}
void ena_stop(void)
{
ena_bluetooth_advertise_stop();
ena_bluetooth_scan_stop();
esp_bluedroid_disable();
esp_bluedroid_deinit();
esp_bt_controller_disable();
esp_bt_controller_deinit();
}

View File

@ -0,0 +1,62 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief handles scanned data by storing temporary beacons, check for threshold and store beacons permanently
*
*/
#ifndef _ena_BEACON_H_
#define _ena_BEACON_H_
#define ENA_BEACON_LOG "ESP-ENA-beacon" // TAG for Logging
#define ENA_BEACON_TRESHOLD (CONFIG_ENA_BEACON_TRESHOLD) // meet for longer than 5 minutes
#define ENA_BEACON_CLEANUP_TRESHOLD (CONFIG_ENA_BEACON_CLEANUP_TRESHOLD) // threshold (in days) for stored beacons to be removed
/**
* @brief check temporary beacon for threshold or expiring
*
* This function checks all current temporary beacons if the contact threshold is
* reached or if the temporary contact can be discarded.
*
* @param[in] unix_timestamp current time as UNIX timestamp to compare
*
*/
void ena_beacons_temp_refresh(uint32_t unix_timestamp);
/**
* @brief check stored beacons to expire
*
* This function checks for all stored beacons if the last timestamp is over a threshold to remove the beacon.
*
* @param[in] unix_timestamp current time as UNIX timestamp to compate
*
*/
void ena_beacons_cleanup(uint32_t unix_timestamp);
/**
* @brief handle new beacon received from a BLE scan
*
* This function gets called when a running BLE scan received a new ENA payload.
* On already detected RPI this will update just the timestamp and RSSI.
*
* @param[in] unix_timestamp UNIX timestamp when beacon was made
* @param[in] rpi received RPI from scanned payload
* @param[in] aem received AEM from scanned payload
* @param[in] rssi measured RSSI on scan
*
*/
void ena_beacon(uint32_t unix_timestamp, uint8_t *rpi, uint8_t *aem, int rssi);
#endif

View File

@ -0,0 +1,52 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief BLE advertising to send own beacons
*
*/
#ifndef _ena_BLUETOOTH_ADVERTISE_H_
#define _ena_BLUETOOTH_ADVERTISE_H_
#define ENA_ADVERTISE_LOG "ESP-ENA-advertise" // TAG for Logging
#define ENA_BLUETOOTH_TAG_DATA (0x1A) // Data for BLE payload TAG
/**
* @brief Start BLE advertising
*/
void ena_bluetooth_advertise_start(void);
/**
* @brief Set payload for BLE advertising
*
* This will set the payload for based on given ENIN and TEK.
*
* Source documents (Section: Advertising Payload)
*
* https://blog.google/documents/70/Exposure_Notification_-_Bluetooth_Specification_v1.2.2.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
*
* @param[in] enin ENIN defining the start of the tek vadility. This should be the ENIN for the current timestamp
* @param[in] tek pointer to the TEK used to encrypt the payload.
*/
void ena_bluetooth_advertise_set_payload(uint32_t enin, uint8_t *tek);
/**
* @brief Stop BLE advertising
*/
void ena_bluetooth_advertise_stop(void);
#endif

View File

@ -0,0 +1,69 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief BLE scans for detecting other beacons
*
*/
#ifndef _ena_BLUETOOTH_SCAN_H_
#define _ena_BLUETOOTH_SCAN_H_
#define ENA_SCAN_LOG "ESP-ENA-scan" // TAG for Logging
#define ENA_SCANNING_TIME (CONFIG_ENA_SCANNING_TIME) // time how long a scan should run
#define ENA_SCANNING_INTERVAL (CONFIG_ENA_SCANNING_INTERVAL) // interval for next scan to happen
/**
* @brief status of BLE scan
*/
typedef enum
{
ENA_SCAN_STATUS_SCANNING = 0, // scan is running
ENA_SCAN_STATUS_NOT_SCANNING, // scan is not running
ENA_SCAN_STATUS_WAITING, // scan is not running but stopped manually
} ena_bluetooth_scan_status;
/**
* @brief initialize the BLE scanning
*
*/
void ena_bluetooth_scan_init(void);
/**
* @brief start BLE scanning for a given duration
*
* Source documents (Section: Scanning Behavior)
*
* https://blog.google/documents/70/Exposure_Notification_-_Bluetooth_Specification_v1.2.2.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
*
* @param[in] duration duration of the scan in seconds
*/
void ena_bluetooth_scan_start(uint32_t duration);
/**
* @brief stop a running BLE scanning
*/
void ena_bluetooth_scan_stop(void);
/**
* @brief return the current scanning status
*
* @return
* current scan status
*/
int ena_bluetooth_scan_get_status(void);
#endif

View File

@ -0,0 +1,126 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief covers cryptography part (key creation, encryption etc.)
*
*/
#ifndef _ena_CRYPTO_H_
#define _ena_CRYPTO_H_
#define ENA_TIME_WINDOW (600) // time window every 10 minutes
#define ENA_KEY_LENGTH (16) // key length
#define ENA_AEM_METADATA_LENGTH (4) // size of metadata
#define ENA_TEK_ROLLING_PERIOD (CONFIG_ENA_TEK_ROLLING_PERIOD) // TEKRollingPeriod
#include <stdio.h>
/**
* @brief initialize cryptography
*
* This initialize the cryptography by setting up entropy.
*/
void ena_crypto_init(void);
/**
* @brief calculate ENIntervalNumber (ENIN) for given UNIX timestamp
*
* Source documents (Section: ENIntervalNumber)
*
* https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
*
*
* @param[in] unix_timestamp UNIX Timestamp to calculate ENIN for
*
* @return
* ENIN for given timestamp
*/
uint32_t ena_crypto_enin(uint32_t unix_timestamp);
/**
* @brief calculate a new random Temporary Exposure Key (TEK)
*
* Source documents (Section: Temporary Exposure Key)
*
* https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
*
* @param[out] tek pointer to the new TEK
*/
void ena_crypto_tek(uint8_t *tek);
/**
* @brief calculate a new Rolling Proximity Identifier Key (RPIK) with given TEK
*
* Source documents (Section: Rolling Proximity Identifier Key)
*
* https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
*
* @param[out] rpik pointer to the new RPIK
* @param[in] tek TEK for calculating RPIK
*/
void ena_crypto_rpik(uint8_t *rpik, uint8_t *tek);
/**
* @brief calculate a new Rolling Proximity Identifier with given RPIK and ENIN
*
* Source documents (Section: Rolling Proximity Identifier)
*
* https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
*
* @param[out] rpi pointer to the new RPI
* @param[in] rpik RPIK for encrypting RPI
* @param[in] enin ENIN to encrypt in RPI
*/
void ena_crypto_rpi(uint8_t *rpi, uint8_t *rpik, uint32_t enin);
/**
* @brief calculate a new Associated Encrypted Metadata Key (AEMK) with given TEK
*
* Source documents (Section: Associated Encrypted Metadata Key)
*
* https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
*
* @param[out] aemk pointer to the new AEMK
* @param[in] tek TEK for calculating AEMK
*/
void ena_crypto_aemk(uint8_t *aemk, uint8_t *tek);
/**
* @brief create Associated Encrypted Metadata (AEM) with given AEMK along the RPI
*
* Source documents (Section: Associated Encrypted Metadata)
*
* https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
*
* https://covid19-static.cdn-apple.com/applications/covid19/current/static/detection-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
*
* @param[out] aem pointer to the new AEM
* @param[in] aemk AEMK for encrypting AEM
* @param[in] rpi RPI for encrypting AEM
* @param[in] power_level BLE power level to encrypt in AEM
*/
void ena_crypto_aem(uint8_t *aem, uint8_t *aemk, uint8_t *rpi, uint8_t power_level);
#endif

View File

@ -0,0 +1,249 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief compare temporary exposure keys with stored beacons, calculate score and risk
*
*/
#ifndef _ena_EXPOSURE_H_
#define _ena_EXPOSURE_H_
#include <stdio.h>
#include "esp_err.h"
#include "ena-storage.h"
#include "ena-crypto.h"
#define ENA_EXPOSURE_LOG "ESP-ENA-exposure" // TAG for Logging
/**
* @brief report type
*/
typedef enum
{
UNKNOWN = 0,
CONFIRMED_TEST_LOW = 1,
CONFIRMED_TEST_STANDARD = 2,
CONFIRMED_TEST_HIGH = 3,
CONFIRMED_CLINICAL_DIAGNOSIS = 4,
SELF_REPORT = 5,
NEGATIVE = 6,
RECURSIVE = 7,
} ena_report_type_t;
/**
* @brief duration risk
*/
typedef enum
{
MINUTES_0 = 0, // D = 0 min
MINUTES_5 = 1, // D <= 5 min
MINUTES_10 = 2, // D <= 10 min
MINUTES_15 = 3, // D <= 15 min
MINUTES_20 = 4, // D <= 20 min
MINUTES_25 = 5, // D <= 25 min
MINUTES_30 = 6, // D <= 30 min
MINUTES_LONGER = 7, // D > 30 min
} ena_duration_risk_t;
/**
* @brief day risk
*/
typedef enum
{
DAYS_14 = 0, // >= 14 days
DAYS_13 = 1, // 12-13 days
DAYS_11 = 2, // 10-11 days
DAYS_9 = 3, // 8-9 days
DAYS_7 = 4, // 6-7 days
DAYS_5 = 5, // 4-5 days
DAYS_3 = 6, // 2-3 days
DAYS_0 = 7, // 0-1 days
} ena_day_risk_t;
/**
* @brief attenuation risk
*/
typedef enum
{
ATTENUATION_73 = 0, // A > 73 dB
ATTENUATION_63 = 1, // 73 >= A > 63
ATTENUATION_51 = 2, // 63 >= A > 61
ATTENUATION_33 = 3, // 51 >= A > 33
ATTENUATION_27 = 4, // 33 >= A > 27
ATTENUATION_15 = 5, // 27 >= A > 15
ATTENUATION_10 = 6, // 15 >= A > 10
ATTENUATION_LOWER = 7, // A <= 10
} ena_attenuation_risk_t;
/**
* @brief risk level from 0-8
*/
typedef enum
{
ZERO = 0,
MINIMAL = 1,
VERY_LOW = 2,
LOW = 3,
MEDIUM = 4,
INCREASED = 5,
HIGH = 6,
VERY_HIGH = 7,
MAXIMUM = 8,
} ena_risk_level_t;
/**
* @brief structure for exposure configuration
*
* The exposure configuration is used to calculate the risk score.
*/
typedef struct __attribute__((__packed__))
{
uint8_t transmission_risk_values[8];
uint8_t duration_risk_values[8];
uint8_t days_risk_values[8];
uint8_t attenuation_risk_values[8];
} ena_exposure_config_t;
/**
* @brief structure for exposure parameter
*
* These parameter are obtained from an exposure information to calculate the risk score.
*/
typedef struct __attribute__((__packed__))
{
ena_report_type_t report_type;
int days;
int duration;
int attenuation;
} ena_exposure_parameter_t;
/**
* @brief structure for exposure summary
*
* This represents the current state of all exposures.
*/
typedef struct __attribute__((__packed__))
{
uint32_t last_update; // timestamp of last update of exposure data
int days_since_last_exposure; // Number of days since the most recent exposure.
int num_exposures; // Number of all exposure information
int max_risk_score; // max. risk score of all exposure information
int risk_score_sum; // sum of all risk_scores
} ena_exposure_summary_t;
/**
* @brief structure for temporary exposure key
*
* The temporary exposure key is used to check for exposure.
*/
typedef struct __attribute__((__packed__))
{
uint8_t key_data[ENA_KEY_LENGTH];
uint8_t transmission_risk_level;
uint32_t rolling_start_interval_number;
uint32_t rolling_period;
ena_report_type_t report_type;
uint32_t days_since_onset_of_symptoms;
} ena_temporary_exposure_key_t;
/**
* @brief calculate transmission risk score
*
* @param[in] config the exposure configuration used for calculating score
* @param[in] params the exposure parameter to calculate with
*
* @return
*/
int ena_exposure_transmission_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params);
/**
* @brief calculate duration risk score
*
* @param[in] config the exposure configuration used for calculating score
* @param[in] params the exposure parameter to calculate with
*
* @return
*/
int ena_exposure_duration_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params);
/**
* @brief calculate days risk score
*
* @param[in] config the exposure configuration used for calculating score
* @param[in] params the exposure parameter to calculate with
*
* @return
*/
int ena_exposure_days_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params);
/**
* @brief calculate attenuation risk score
*
* @param[in] config the exposure configuration used for calculating score
* @param[in] params the exposure parameter to calculate with
*
* @return
*/
int ena_exposure_attenuation_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params);
/**
* @brief calculate overall risk score
*
* @param[in] config the exposure configuration used for calculating score
* @param[in] params the exposure parameter to calculate with
*
* @return
*/
int ena_exposure_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params);
/**
* @brief returns the current exposure summary
*
* @param[in] config the exposure configuration used for calculating scores
*/
void ena_exposure_summary(ena_exposure_config_t *config);
/**
* @brief return the current exposure summary
*
* @return
* ena_exposure_summary_t pointer to the current exposure summary
*/
ena_exposure_summary_t *ena_exposure_current_summary(void);
/**
* @brief return a default exposure configuration
*
* @return
* ena_exposure_config_t default exposure configuration
*/
ena_exposure_config_t *ena_exposure_default_config(void);
/**
* @brief reads Temporary Exposue Key check for exposures with certain beacon
*
* @param[in] ena_beacon_t the beacon to check against
* @param[in] temporary_exposure_key the temporary exposure keys to check
*/
void ena_exposure_check(ena_beacon_t beacon, ena_temporary_exposure_key_t temporary_exposure_key);
/**
* @brief reads Temporary Exposue Key and check for exposures with all beacons
*
* @param[in] temporary_exposure_key the temporary exposure keys to check
*/
void ena_exposure_check_temporary_exposure_key(ena_temporary_exposure_key_t temporary_exposure_key);
#endif

View File

@ -0,0 +1,302 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief storage part to store own TEKs and beacons
*
*/
#ifndef _ena_STORAGE_H_
#define _ena_STORAGE_H_
#include "ena-crypto.h"
#define ENA_STORAGE_LOG "ESP-ENA-storage" // TAG for Logging
#define ENA_STORAGE_PARTITION_NAME (CONFIG_ENA_STORAGE_PARTITION_NAME) // name of partition to use for storing
#define ENA_STORAGE_START_ADDRESS (CONFIG_ENA_STORAGE_START_ADDRESS) // start address of storage
#define ENA_STORAGE_TEK_MAX (CONFIG_ENA_STORAGE_TEK_MAX) // Period of storing TEKs // length of a stored beacon -> RPI keysize + AEM size + 4 Bytes for ENIN + 4 Bytes for RSSI
#define ENA_STORAGE_TEMP_BEACONS_MAX (CONFIG_ENA_STORAGE_TEMP_BEACONS_MAX) // Maximum number of temporary stored beacons // length of a stored beacon -> RPI keysize + AEM size + 4 Bytes for ENIN + 4 Bytes for RSSI
#define ENA_STORAGE_EXPOSURE_INFORMATION_MAX (CONFIG_ENA_STORAGE_EXPOSURE_INFORMATION_MAX) // Maximum number of stored exposure information
/**
* @brief structure for TEK
*/
typedef struct __attribute__((__packed__))
{
uint8_t key_data[ENA_KEY_LENGTH]; // key data for encryption
uint32_t enin; // ENIN marking start of validity
uint8_t rolling_period; // period after validity start to mark key as expired
} ena_tek_t;
/**
* @brief sturcture for storing a beacons
*/
typedef struct __attribute__((__packed__))
{
uint8_t rpi[ENA_KEY_LENGTH]; // received RPI of beacon
uint8_t aem[ENA_AEM_METADATA_LENGTH]; // received AEM of beacon
uint32_t timestamp_first; // timestamp of first recognition
uint32_t timestamp_last; // timestamp of last recognition
int rssi; // average measured RSSI
} ena_beacon_t;
/**
* @brief structure for storing a Exposure Information (combined ExposureInformation, ExposureWindow and ScanInstance from Google API >= 1.5)
*/
typedef struct __attribute__((__packed__))
{
uint32_t day; // Day of the exposure, using UTC, encapsulated as the time of the beginning of that day.
int typical_attenuation; // Aggregation of the attenuations of all of a given diagnosis key's beacons received during the scan, in dB.
int min_attenuation; // Minimum attenuation of all of a given diagnosis key's beacons received during the scan, in dB.
int duration_minutes; //The duration of the exposure in minutes.
int report_type; // Type of diagnosis associated with a key.
} ena_exposure_information_t;
/**
* @brief read bytes at given address
*
* @param[in] address the address to read bytes from
* @param[out] data pointer to write the read data
* @param[in] size how many bytes to read
*/
void ena_storage_read(size_t address, void *data, size_t size);
/**
* @brief store bytes at given address
*
* @param[in] address the address to write bytes to
* @param[in] data pointer to the data to write
* @param[in] size how many bytes to write
*/
void ena_storage_write(size_t address, void *data, size_t size);
/**
* @brief erase storage at given address
*
* @param[in] address the address to erase from
* @param[in] size how many bytes to erase
*/
void ena_storage_erase(size_t address, size_t size);
/**
* @brief deletes bytes at given address and shift other data back
*
* @param[in] address the address to delete from
* @param[in] end_address the address to mark end of shift
* @param[in] size how many bytes to delete
*/
void ena_storage_shift_delete(size_t address, size_t end_address, size_t size);
/**
* @brief get timestamp of most recent exposure data
*
* @return
* unix timestamp
*/
uint32_t ena_storage_read_last_exposure_date(void);
/**
* @brief set timestamp of most recent exposure data
*
* @param[in] timestamp unix timestamp
*/
void ena_storage_write_last_exposure_date(uint32_t timestamp);
/**
* @brief get last stored TEK
*
* @param[out] tek pointer to write last TEK to
*
* @return
* total number of TEKs stored
*/
uint32_t ena_storage_read_last_tek(ena_tek_t *tek);
/**
* @brief store given TEK
*
* This will store the given TEK as new TEK.
*
* @param[in] tek the tek to store
*/
void ena_storage_write_tek(ena_tek_t *tek);
/**
* @brief get number of stored exposure information
*
* @return
* total number of exposure information stored
*/
uint32_t ena_storage_exposure_information_count(void);
/**
* @brief get exposure information at given index
*
* @param[in] index the index of the exposure information to read
* @param[out] exposure_info pointer to exposure information to write to
*/
void ena_storage_get_exposure_information(uint32_t index, ena_exposure_information_t *exposure_info);
/**
* @brief store exposure information
*
* @param[in] exposure_info new exposure information to store
*/
void ena_storage_add_exposure_information(ena_exposure_information_t *exposure_info);
/**
* @brief get number of stored temporary beacons
*
* @return
* total number of temporary beacons stored
*/
uint32_t ena_storage_temp_beacons_count(void);
/**
* @brief get temporary beacon at given index
*
* @param[in] index the index of the temporary beacon to read
* @param[out] beacon pointer to temporary beacon to write to
*/
void ena_storage_get_temp_beacon(uint32_t index, ena_beacon_t *beacon);
/**
* @brief store temporary beacon
*
* @param[in] beacon new temporary beacon to store
*
* @return
* index of new stored beacon
*/
uint32_t ena_storage_add_temp_beacon(ena_beacon_t *beacon);
/**
* @brief store temporary beacon at given index
*
* @param[in] index the index of the temporary beacon to overwrite
* @param[in] beacon temporary beacon to store
*/
void ena_storage_set_temp_beacon(uint32_t index, ena_beacon_t *beacon);
/**
* @brief remove temporary beacon at given index
*
* @param[in] index the index of the temporary beacon to remove
*/
void ena_storage_remove_temp_beacon(uint32_t index);
/**
* @brief get number of permanently stored beacons
*
* @return
* total number of beacons stored
*/
uint32_t ena_storage_beacons_count(void);
/**
* @brief get permanently stored beacon at given index
*
* @param[in] index the index of the beacon to read
* @param[out] beacon pointer to to write to
*/
void ena_storage_get_beacon(uint32_t index, ena_beacon_t *beacon);
/**
* @brief permanently store beacon
*
* @param[in] beacon new beacon to permanently store
*/
void ena_storage_add_beacon(ena_beacon_t *beacon);
/**
* @brief remove beacon at given index
*
* @param[in] index the index of the beacon to remove
*/
void ena_storage_remove_beacon(uint32_t index);
/**
* @brief erase the storage
*
* This function completely deletes all stored data and resets the counters
* of TEKs, temporary beacon and beacon to zero.
*/
void ena_storage_erase_all(void);
/**
* @brief erase all stored TEKs
*
* This function deletes all stored TEKs and resets counter to zero.
*/
void ena_storage_erase_tek(void);
/**
* @brief erase all stored exposure information
*
* This function deletes all stored exposure information and resets counter to zero.
*/
void ena_storage_erase_exposure_information(void);
/**
* @brief erase all stored temporary beacons
*
* This function deletes all stored temporary beacons and resets counter to zero.
*/
void ena_storage_erase_temporary_beacon(void);
/**
* @brief erase all permanently stored beacons
*
* This function deletes all stored beacons and resets counter to zero.
*/
void ena_storage_erase_beacon(void);
/**
* @brief helper to dump a byte array as hash
*/
void ena_storage_dump_hash_array(uint8_t *data, size_t size);
/**
* @brief dump all stored TEKs to serial output
*
* This function prints all stored TEKs to serial output in
* the following CSV format: #,enin,tek
*/
void ena_storage_dump_teks(void);
/**
* @brief dump all stored exposure information to serial output
*
* This function prints all stored exposure information to serial output in
* the following CSV format: #,day,typical_attenuation,min_attenuation,duration_minutes,report_type
*/
void ena_storage_dump_exposure_information(void);
/**
* @brief dump all stored temporary beacons to serial output
*
* This function prints all stored temporary beacons to serial output in
* the following CSV format: #,timestamp_first,timestamp_last,rpi,aem,rssi
*/
void ena_storage_dump_temp_beacons(void);
/**
* @brief dump all stored beacons to serial output
*
* This function prints all stored beacons to serial output in
* the following CSV format: #,timestamp,rpi,aem,rssi
*/
void ena_storage_dump_beacons(void);
#endif

View File

@ -0,0 +1,49 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file
*
* @brief run all other ena parts together to time scanning, advertising and exposure checks
*
*/
#ifndef _ena_H_
#define _ena_H_
#define ENA_LOG "ESP-ENA" // TAG for Logging
#define ENA_BT_ROTATION_TIMEOUT_INTERVAL (CONFIG_ENA_BT_ROTATION_TIMEOUT_INTERVAL) // change advertising payload and therefore the BT address
#define ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL (CONFIG_ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL) // random intervall change for BT address change
/**
* @brief Run Exposure Notification API
*
* This runs the complete BLE logic
*
*/
void ena_run(void);
/**
* @brief Start Exposure Notification API
*
* This initializes the complete stack of ESP_ENA. It will initialize BLE module and
* starting a task for managing advertising and scanning processes.
*
*/
void ena_start(void);
/**
* @brief stop ena
*/
void ena_stop(void);
#endif

View File

@ -78,7 +78,7 @@ void interface_data_rst(void)
ena_storage_write_last_exposure_date(0);
break;
case INTERFACE_DATA_DEL_ALL:
ena_storage_erase();
ena_storage_erase_all();
break;
}

View File

@ -75,6 +75,7 @@ void interface_wifi_mid(void)
memset(&current_wifi_config, 0, sizeof(wifi_config_t));
memcpy(current_wifi_config.sta.ssid, ap_info[ap_selected].ssid, strlen((char *)ap_info[ap_selected].ssid));
interface_input(&interface_wifi_input_rst, &interface_wifi_input_set, 64);
interface_input_set_text("muffimuffi");
}
void interface_wifi_up(void)
{

View File

@ -0,0 +1,8 @@
idf_component_register(
SRCS
"pb_common.c"
"pb_decode.c"
"pb_encode.c"
"TemporaryExposureKeyExport.pb.c"
INCLUDE_DIRS "."
)

View File

@ -0,0 +1,20 @@
Copyright (c) 2011 Petteri Aimonen <jpa at nanopb.mail.kapsi.fi>
This software is provided 'as-is', without any express or
implied warranty. In no event will the authors be held liable
for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.

View File

@ -0,0 +1,19 @@
/* Automatically generated nanopb constant definitions */
/* Generated by nanopb-0.4.2 */
#include "TemporaryExposureKeyExport.pb.h"
#if PB_PROTO_HEADER_VERSION != 40
#error Regenerate this file with the current version of nanopb generator.
#endif
PB_BIND(TemporaryExposureKeyExport, TemporaryExposureKeyExport, AUTO)
PB_BIND(SignatureInfo, SignatureInfo, AUTO)
PB_BIND(TemporaryExposureKey, TemporaryExposureKey, AUTO)

View File

@ -0,0 +1,147 @@
/* Automatically generated nanopb header */
/* Generated by nanopb-0.4.2 */
#ifndef PB_TEMPORARYEXPOSUREKEYEXPORT_PB_H_INCLUDED
#define PB_TEMPORARYEXPOSUREKEYEXPORT_PB_H_INCLUDED
#include <pb.h>
#if PB_PROTO_HEADER_VERSION != 40
#error Regenerate this file with the current version of nanopb generator.
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* Enum definitions */
typedef enum _TemporaryExposureKey_ReportType {
TemporaryExposureKey_ReportType_UNKNOWN = 0,
TemporaryExposureKey_ReportType_CONFIRMED_TEST = 1,
TemporaryExposureKey_ReportType_CONFIRMED_CLINICAL_DIAGNOSIS = 2,
TemporaryExposureKey_ReportType_SELF_REPORT = 3,
TemporaryExposureKey_ReportType_RECURSIVE = 4,
TemporaryExposureKey_ReportType_REVOKED = 5
} TemporaryExposureKey_ReportType;
/* Struct definitions */
typedef struct _SignatureInfo {
pb_callback_t verification_key_version;
pb_callback_t verification_key_id;
pb_callback_t signature_algorithm;
} SignatureInfo;
typedef struct _TemporaryExposureKey {
pb_callback_t key_data;
bool has_transmission_risk_level;
int32_t transmission_risk_level;
bool has_rolling_start_interval_number;
int32_t rolling_start_interval_number;
bool has_rolling_period;
int32_t rolling_period;
bool has_report_type;
TemporaryExposureKey_ReportType report_type;
bool has_days_since_onset_of_symptoms;
int32_t days_since_onset_of_symptoms;
} TemporaryExposureKey;
typedef struct _TemporaryExposureKeyExport {
bool has_start_timestamp;
uint64_t start_timestamp;
bool has_end_timestamp;
uint64_t end_timestamp;
pb_callback_t region;
bool has_batch_num;
int32_t batch_num;
bool has_batch_size;
int32_t batch_size;
pb_callback_t signature_infos;
pb_callback_t keys;
pb_callback_t revised_keys;
} TemporaryExposureKeyExport;
/* Helper constants for enums */
#define _TemporaryExposureKey_ReportType_MIN TemporaryExposureKey_ReportType_UNKNOWN
#define _TemporaryExposureKey_ReportType_MAX TemporaryExposureKey_ReportType_REVOKED
#define _TemporaryExposureKey_ReportType_ARRAYSIZE ((TemporaryExposureKey_ReportType)(TemporaryExposureKey_ReportType_REVOKED+1))
/* Initializer values for message structs */
#define TemporaryExposureKeyExport_init_default {false, 0, false, 0, {{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define SignatureInfo_init_default {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define TemporaryExposureKey_init_default {{{NULL}, NULL}, false, 0, false, 0, false, 144, false, _TemporaryExposureKey_ReportType_MIN, false, 0}
#define TemporaryExposureKeyExport_init_zero {false, 0, false, 0, {{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define SignatureInfo_init_zero {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define TemporaryExposureKey_init_zero {{{NULL}, NULL}, false, 0, false, 0, false, 0, false, _TemporaryExposureKey_ReportType_MIN, false, 0}
/* Field tags (for use in manual encoding/decoding) */
#define SignatureInfo_verification_key_version_tag 3
#define SignatureInfo_verification_key_id_tag 4
#define SignatureInfo_signature_algorithm_tag 5
#define TemporaryExposureKey_key_data_tag 1
#define TemporaryExposureKey_transmission_risk_level_tag 2
#define TemporaryExposureKey_rolling_start_interval_number_tag 3
#define TemporaryExposureKey_rolling_period_tag 4
#define TemporaryExposureKey_report_type_tag 5
#define TemporaryExposureKey_days_since_onset_of_symptoms_tag 6
#define TemporaryExposureKeyExport_start_timestamp_tag 1
#define TemporaryExposureKeyExport_end_timestamp_tag 2
#define TemporaryExposureKeyExport_region_tag 3
#define TemporaryExposureKeyExport_batch_num_tag 4
#define TemporaryExposureKeyExport_batch_size_tag 5
#define TemporaryExposureKeyExport_signature_infos_tag 6
#define TemporaryExposureKeyExport_keys_tag 7
#define TemporaryExposureKeyExport_revised_keys_tag 8
/* Struct field encoding specification for nanopb */
#define TemporaryExposureKeyExport_FIELDLIST(X, a) \
X(a, STATIC, OPTIONAL, FIXED64, start_timestamp, 1) \
X(a, STATIC, OPTIONAL, FIXED64, end_timestamp, 2) \
X(a, CALLBACK, OPTIONAL, STRING, region, 3) \
X(a, STATIC, OPTIONAL, INT32, batch_num, 4) \
X(a, STATIC, OPTIONAL, INT32, batch_size, 5) \
X(a, CALLBACK, REPEATED, MESSAGE, signature_infos, 6) \
X(a, CALLBACK, REPEATED, MESSAGE, keys, 7) \
X(a, CALLBACK, REPEATED, MESSAGE, revised_keys, 8)
#define TemporaryExposureKeyExport_CALLBACK pb_default_field_callback
#define TemporaryExposureKeyExport_DEFAULT NULL
#define TemporaryExposureKeyExport_signature_infos_MSGTYPE SignatureInfo
#define TemporaryExposureKeyExport_keys_MSGTYPE TemporaryExposureKey
#define TemporaryExposureKeyExport_revised_keys_MSGTYPE TemporaryExposureKey
#define SignatureInfo_FIELDLIST(X, a) \
X(a, CALLBACK, OPTIONAL, STRING, verification_key_version, 3) \
X(a, CALLBACK, OPTIONAL, STRING, verification_key_id, 4) \
X(a, CALLBACK, OPTIONAL, STRING, signature_algorithm, 5)
#define SignatureInfo_CALLBACK pb_default_field_callback
#define SignatureInfo_DEFAULT NULL
#define TemporaryExposureKey_FIELDLIST(X, a) \
X(a, CALLBACK, OPTIONAL, BYTES, key_data, 1) \
X(a, STATIC, OPTIONAL, INT32, transmission_risk_level, 2) \
X(a, STATIC, OPTIONAL, INT32, rolling_start_interval_number, 3) \
X(a, STATIC, OPTIONAL, INT32, rolling_period, 4) \
X(a, STATIC, OPTIONAL, UENUM, report_type, 5) \
X(a, STATIC, OPTIONAL, SINT32, days_since_onset_of_symptoms, 6)
#define TemporaryExposureKey_CALLBACK pb_default_field_callback
#define TemporaryExposureKey_DEFAULT (const pb_byte_t*)"\x20\x90\x01\x00"
extern const pb_msgdesc_t TemporaryExposureKeyExport_msg;
extern const pb_msgdesc_t SignatureInfo_msg;
extern const pb_msgdesc_t TemporaryExposureKey_msg;
/* Defines for backwards compatibility with code written before nanopb-0.4.0 */
#define TemporaryExposureKeyExport_fields &TemporaryExposureKeyExport_msg
#define SignatureInfo_fields &SignatureInfo_msg
#define TemporaryExposureKey_fields &TemporaryExposureKey_msg
/* Maximum encoded size of messages (where known) */
/* TemporaryExposureKeyExport_size depends on runtime parameters */
/* SignatureInfo_size depends on runtime parameters */
/* TemporaryExposureKey_size depends on runtime parameters */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

View File

@ -0,0 +1,65 @@
syntax = "proto2";
message TemporaryExposureKeyExport {
// Time window of keys in this batch based on arrival to server, in UTC seconds.
optional fixed64 start_timestamp = 1;
optional fixed64 end_timestamp = 2;
// Region for which these keys came from, such as country.
optional string region = 3;
// For example, file 2 in batch size of 10. Ordinal, 1-based numbering.
// Note: Not yet supported on iOS.
optional int32 batch_num = 4;
optional int32 batch_size = 5;
// Information about associated signatures
repeated SignatureInfo signature_infos = 6;
// The TemporaryExposureKeys for initial release of keys.
// Keys should be included in this list for initial release,
// whereas revised or revoked keys should go in revised_keys.
repeated TemporaryExposureKey keys = 7;
// TemporaryExposureKeys that have changed status.
// Keys should be included in this list if they have changed status
// or have been revoked.
repeated TemporaryExposureKey revised_keys = 8;
}
message SignatureInfo {
// The first two fields have been deprecated
reserved 1, 2;
reserved "app_bundle_id", "android_package";
// Key version for rollovers
// Must be in character class [a-zA-Z0-9_]. For example, 'v1'
optional string verification_key_version = 3;
// Alias with which to identify public key to be used for verification
// Must be in character class [a-zA-Z0-9_.]
// For cross-compatibility with Apple, you can use your region's three-digit
// mobile country code (MCC). If your region has more than one MCC, choose the
// one that Apple has configured.
optional string verification_key_id = 4;
// ASN.1 OID for Algorithm Identifier. For example, `1.2.840.10045.4.3.2'
optional string signature_algorithm = 5;
}
message TemporaryExposureKey {
// Key of infected user
optional bytes key_data = 1;
// Varying risk associated with a key depending on diagnosis method
optional int32 transmission_risk_level = 2 [deprecated = true];
// The interval number since epoch for which a key starts
optional int32 rolling_start_interval_number = 3;
// Increments of 10 minutes describing how long a key is valid
optional int32 rolling_period = 4
[default = 144]; // defaults to 24 hours
// Data type representing why this key was published.
enum ReportType {
UNKNOWN = 0; // Never returned by the client API.
CONFIRMED_TEST = 1;
CONFIRMED_CLINICAL_DIAGNOSIS = 2;
SELF_REPORT = 3;
RECURSIVE = 4; // Reserved for future use.
REVOKED = 5; // Used to revoke a key, never returned by client API.
}
// Type of diagnosis associated with a key.
optional ReportType report_type = 5;
// Number of days elapsed between symptom onset and the TEK being used.
// E.g. 2 means TEK is 2 days after onset of symptoms.
optional sint32 days_since_onset_of_symptoms = 6;
}

868
components/nanopb/pb.h Normal file
View File

@ -0,0 +1,868 @@
/* Common parts of the nanopb library. Most of these are quite low-level
* stuff. For the high-level interface, see pb_encode.h and pb_decode.h.
*/
#ifndef PB_H_INCLUDED
#define PB_H_INCLUDED
/*****************************************************************
* Nanopb compilation time options. You can change these here by *
* uncommenting the lines, or on the compiler command line. *
*****************************************************************/
/* Enable support for dynamically allocated fields */
/* #define PB_ENABLE_MALLOC 1 */
/* Define this if your CPU / compiler combination does not support
* unaligned memory access to packed structures. */
/* #define PB_NO_PACKED_STRUCTS 1 */
/* Increase the number of required fields that are tracked.
* A compiler warning will tell if you need this. */
/* #define PB_MAX_REQUIRED_FIELDS 256 */
/* Add support for tag numbers > 65536 and fields larger than 65536 bytes. */
/* #define PB_FIELD_32BIT 1 */
/* Disable support for error messages in order to save some code space. */
/* #define PB_NO_ERRMSG 1 */
/* Disable support for custom streams (support only memory buffers). */
/* #define PB_BUFFER_ONLY 1 */
/* Disable support for 64-bit datatypes, for compilers without int64_t
or to save some code space. */
/* #define PB_WITHOUT_64BIT 1 */
/* Don't encode scalar arrays as packed. This is only to be used when
* the decoder on the receiving side cannot process packed scalar arrays.
* Such example is older protobuf.js. */
/* #define PB_ENCODE_ARRAYS_UNPACKED 1 */
/* Enable conversion of doubles to floats for platforms that do not
* support 64-bit doubles. Most commonly AVR. */
/* #define PB_CONVERT_DOUBLE_FLOAT 1 */
/* Check whether incoming strings are valid UTF-8 sequences. Slows down
* the string processing slightly and slightly increases code size. */
/* #define PB_VALIDATE_UTF8 1 */
/******************************************************************
* You usually don't need to change anything below this line. *
* Feel free to look around and use the defined macros, though. *
******************************************************************/
/* Version of the nanopb library. Just in case you want to check it in
* your own program. */
#define NANOPB_VERSION nanopb-0.4.2
/* Include all the system headers needed by nanopb. You will need the
* definitions of the following:
* - strlen, memcpy, memset functions
* - [u]int_least8_t, uint_fast8_t, [u]int_least16_t, [u]int32_t, [u]int64_t
* - size_t
* - bool
*
* If you don't have the standard header files, you can instead provide
* a custom header that defines or includes all this. In that case,
* define PB_SYSTEM_HEADER to the path of this file.
*/
#ifdef PB_SYSTEM_HEADER
#include PB_SYSTEM_HEADER
#else
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <limits.h>
#ifdef PB_ENABLE_MALLOC
#include <stdlib.h>
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* Macro for defining packed structures (compiler dependent).
* This just reduces memory requirements, but is not required.
*/
#if defined(PB_NO_PACKED_STRUCTS)
/* Disable struct packing */
# define PB_PACKED_STRUCT_START
# define PB_PACKED_STRUCT_END
# define pb_packed
#elif defined(__GNUC__) || defined(__clang__)
/* For GCC and clang */
# define PB_PACKED_STRUCT_START
# define PB_PACKED_STRUCT_END
# define pb_packed __attribute__((packed))
#elif defined(__ICCARM__) || defined(__CC_ARM)
/* For IAR ARM and Keil MDK-ARM compilers */
# define PB_PACKED_STRUCT_START _Pragma("pack(push, 1)")
# define PB_PACKED_STRUCT_END _Pragma("pack(pop)")
# define pb_packed
#elif defined(_MSC_VER) && (_MSC_VER >= 1500)
/* For Microsoft Visual C++ */
# define PB_PACKED_STRUCT_START __pragma(pack(push, 1))
# define PB_PACKED_STRUCT_END __pragma(pack(pop))
# define pb_packed
#else
/* Unknown compiler */
# define PB_PACKED_STRUCT_START
# define PB_PACKED_STRUCT_END
# define pb_packed
#endif
/* Handly macro for suppressing unreferenced-parameter compiler warnings. */
#ifndef PB_UNUSED
#define PB_UNUSED(x) (void)(x)
#endif
/* Harvard-architecture processors may need special attributes for storing
* field information in program memory. */
#ifndef PB_PROGMEM
#ifdef __AVR__
#include <avr/pgmspace.h>
#define PB_PROGMEM PROGMEM
#define PB_PROGMEM_READU32(x) pgm_read_dword(&x)
#else
#define PB_PROGMEM
#define PB_PROGMEM_READU32(x) (x)
#endif
#endif
/* Compile-time assertion, used for checking compatible compilation options.
* If this does not work properly on your compiler, use
* #define PB_NO_STATIC_ASSERT to disable it.
*
* But before doing that, check carefully the error message / place where it
* comes from to see if the error has a real cause. Unfortunately the error
* message is not always very clear to read, but you can see the reason better
* in the place where the PB_STATIC_ASSERT macro was called.
*/
#ifndef PB_NO_STATIC_ASSERT
# ifndef PB_STATIC_ASSERT
# if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
/* C11 standard _Static_assert mechanism */
# define PB_STATIC_ASSERT(COND,MSG) _Static_assert(COND,#MSG);
# else
/* Classic negative-size-array static assert mechanism */
# define PB_STATIC_ASSERT(COND,MSG) typedef char PB_STATIC_ASSERT_MSG(MSG, __LINE__, __COUNTER__)[(COND)?1:-1];
# define PB_STATIC_ASSERT_MSG(MSG, LINE, COUNTER) PB_STATIC_ASSERT_MSG_(MSG, LINE, COUNTER)
# define PB_STATIC_ASSERT_MSG_(MSG, LINE, COUNTER) pb_static_assertion_##MSG##_##LINE##_##COUNTER
# endif
# endif
#else
/* Static asserts disabled by PB_NO_STATIC_ASSERT */
# define PB_STATIC_ASSERT(COND,MSG)
#endif
/* Number of required fields to keep track of. */
#ifndef PB_MAX_REQUIRED_FIELDS
#define PB_MAX_REQUIRED_FIELDS 64
#endif
#if PB_MAX_REQUIRED_FIELDS < 64
#error You should not lower PB_MAX_REQUIRED_FIELDS from the default value (64).
#endif
#ifdef PB_WITHOUT_64BIT
#ifdef PB_CONVERT_DOUBLE_FLOAT
/* Cannot use doubles without 64-bit types */
#undef PB_CONVERT_DOUBLE_FLOAT
#endif
#endif
/* List of possible field types. These are used in the autogenerated code.
* Least-significant 4 bits tell the scalar type
* Most-significant 4 bits specify repeated/required/packed etc.
*/
typedef uint_least8_t pb_type_t;
/**** Field data types ****/
/* Numeric types */
#define PB_LTYPE_BOOL 0x00U /* bool */
#define PB_LTYPE_VARINT 0x01U /* int32, int64, enum, bool */
#define PB_LTYPE_UVARINT 0x02U /* uint32, uint64 */
#define PB_LTYPE_SVARINT 0x03U /* sint32, sint64 */
#define PB_LTYPE_FIXED32 0x04U /* fixed32, sfixed32, float */
#define PB_LTYPE_FIXED64 0x05U /* fixed64, sfixed64, double */
/* Marker for last packable field type. */
#define PB_LTYPE_LAST_PACKABLE 0x05U
/* Byte array with pre-allocated buffer.
* data_size is the length of the allocated PB_BYTES_ARRAY structure. */
#define PB_LTYPE_BYTES 0x06U
/* String with pre-allocated buffer.
* data_size is the maximum length. */
#define PB_LTYPE_STRING 0x07U
/* Submessage
* submsg_fields is pointer to field descriptions */
#define PB_LTYPE_SUBMESSAGE 0x08U
/* Submessage with pre-decoding callback
* The pre-decoding callback is stored as pb_callback_t right before pSize.
* submsg_fields is pointer to field descriptions */
#define PB_LTYPE_SUBMSG_W_CB 0x09U
/* Extension pseudo-field
* The field contains a pointer to pb_extension_t */
#define PB_LTYPE_EXTENSION 0x0AU
/* Byte array with inline, pre-allocated byffer.
* data_size is the length of the inline, allocated buffer.
* This differs from PB_LTYPE_BYTES by defining the element as
* pb_byte_t[data_size] rather than pb_bytes_array_t. */
#define PB_LTYPE_FIXED_LENGTH_BYTES 0x0BU
/* Number of declared LTYPES */
#define PB_LTYPES_COUNT 0x0CU
#define PB_LTYPE_MASK 0x0FU
/**** Field repetition rules ****/
#define PB_HTYPE_REQUIRED 0x00U
#define PB_HTYPE_OPTIONAL 0x10U
#define PB_HTYPE_SINGULAR 0x10U
#define PB_HTYPE_REPEATED 0x20U
#define PB_HTYPE_FIXARRAY 0x20U
#define PB_HTYPE_ONEOF 0x30U
#define PB_HTYPE_MASK 0x30U
/**** Field allocation types ****/
#define PB_ATYPE_STATIC 0x00U
#define PB_ATYPE_POINTER 0x80U
#define PB_ATYPE_CALLBACK 0x40U
#define PB_ATYPE_MASK 0xC0U
#define PB_ATYPE(x) ((x) & PB_ATYPE_MASK)
#define PB_HTYPE(x) ((x) & PB_HTYPE_MASK)
#define PB_LTYPE(x) ((x) & PB_LTYPE_MASK)
#define PB_LTYPE_IS_SUBMSG(x) (PB_LTYPE(x) == PB_LTYPE_SUBMESSAGE || \
PB_LTYPE(x) == PB_LTYPE_SUBMSG_W_CB)
/* Data type used for storing sizes of struct fields
* and array counts.
*/
#if defined(PB_FIELD_32BIT)
typedef uint32_t pb_size_t;
typedef int32_t pb_ssize_t;
#else
typedef uint_least16_t pb_size_t;
typedef int_least16_t pb_ssize_t;
#endif
#define PB_SIZE_MAX ((pb_size_t)-1)
/* Data type for storing encoded data and other byte streams.
* This typedef exists to support platforms where uint8_t does not exist.
* You can regard it as equivalent on uint8_t on other platforms.
*/
typedef uint_least8_t pb_byte_t;
/* Forward declaration of struct types */
typedef struct pb_istream_s pb_istream_t;
typedef struct pb_ostream_s pb_ostream_t;
typedef struct pb_field_iter_s pb_field_iter_t;
/* This structure is used in auto-generated constants
* to specify struct fields.
*/
PB_PACKED_STRUCT_START
typedef struct pb_msgdesc_s pb_msgdesc_t;
struct pb_msgdesc_s {
pb_size_t field_count;
const uint32_t *field_info;
const pb_msgdesc_t * const * submsg_info;
const pb_byte_t *default_value;
bool (*field_callback)(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_iter_t *field);
} pb_packed;
PB_PACKED_STRUCT_END
/* Iterator for message descriptor */
struct pb_field_iter_s {
const pb_msgdesc_t *descriptor; /* Pointer to message descriptor constant */
void *message; /* Pointer to start of the structure */
pb_size_t index; /* Index of the field */
pb_size_t field_info_index; /* Index to descriptor->field_info array */
pb_size_t required_field_index; /* Index that counts only the required fields */
pb_size_t submessage_index; /* Index that counts only submessages */
pb_size_t tag; /* Tag of current field */
pb_size_t data_size; /* sizeof() of a single item */
pb_size_t array_size; /* Number of array entries */
pb_type_t type; /* Type of current field */
void *pField; /* Pointer to current field in struct */
void *pData; /* Pointer to current data contents. Different than pField for arrays and pointers. */
void *pSize; /* Pointer to count/has field */
const pb_msgdesc_t *submsg_desc; /* For submessage fields, pointer to field descriptor for the submessage. */
};
/* For compatibility with legacy code */
typedef pb_field_iter_t pb_field_t;
/* Make sure that the standard integer types are of the expected sizes.
* Otherwise fixed32/fixed64 fields can break.
*
* If you get errors here, it probably means that your stdint.h is not
* correct for your platform.
*/
#ifndef PB_WITHOUT_64BIT
PB_STATIC_ASSERT(sizeof(int64_t) == 2 * sizeof(int32_t), INT64_T_WRONG_SIZE)
PB_STATIC_ASSERT(sizeof(uint64_t) == 2 * sizeof(uint32_t), UINT64_T_WRONG_SIZE)
#endif
/* This structure is used for 'bytes' arrays.
* It has the number of bytes in the beginning, and after that an array.
* Note that actual structs used will have a different length of bytes array.
*/
#define PB_BYTES_ARRAY_T(n) struct { pb_size_t size; pb_byte_t bytes[n]; }
#define PB_BYTES_ARRAY_T_ALLOCSIZE(n) ((size_t)n + offsetof(pb_bytes_array_t, bytes))
struct pb_bytes_array_s {
pb_size_t size;
pb_byte_t bytes[1];
};
typedef struct pb_bytes_array_s pb_bytes_array_t;
/* This structure is used for giving the callback function.
* It is stored in the message structure and filled in by the method that
* calls pb_decode.
*
* The decoding callback will be given a limited-length stream
* If the wire type was string, the length is the length of the string.
* If the wire type was a varint/fixed32/fixed64, the length is the length
* of the actual value.
* The function may be called multiple times (especially for repeated types,
* but also otherwise if the message happens to contain the field multiple
* times.)
*
* The encoding callback will receive the actual output stream.
* It should write all the data in one call, including the field tag and
* wire type. It can write multiple fields.
*
* The callback can be null if you want to skip a field.
*/
typedef struct pb_callback_s pb_callback_t;
struct pb_callback_s {
/* Callback functions receive a pointer to the arg field.
* You can access the value of the field as *arg, and modify it if needed.
*/
union {
bool (*decode)(pb_istream_t *stream, const pb_field_t *field, void **arg);
bool (*encode)(pb_ostream_t *stream, const pb_field_t *field, void * const *arg);
} funcs;
/* Free arg for use by callback */
void *arg;
};
extern bool pb_default_field_callback(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_t *field);
/* Wire types. Library user needs these only in encoder callbacks. */
typedef enum {
PB_WT_VARINT = 0,
PB_WT_64BIT = 1,
PB_WT_STRING = 2,
PB_WT_32BIT = 5
} pb_wire_type_t;
/* Structure for defining the handling of unknown/extension fields.
* Usually the pb_extension_type_t structure is automatically generated,
* while the pb_extension_t structure is created by the user. However,
* if you want to catch all unknown fields, you can also create a custom
* pb_extension_type_t with your own callback.
*/
typedef struct pb_extension_type_s pb_extension_type_t;
typedef struct pb_extension_s pb_extension_t;
struct pb_extension_type_s {
/* Called for each unknown field in the message.
* If you handle the field, read off all of its data and return true.
* If you do not handle the field, do not read anything and return true.
* If you run into an error, return false.
* Set to NULL for default handler.
*/
bool (*decode)(pb_istream_t *stream, pb_extension_t *extension,
uint32_t tag, pb_wire_type_t wire_type);
/* Called once after all regular fields have been encoded.
* If you have something to write, do so and return true.
* If you do not have anything to write, just return true.
* If you run into an error, return false.
* Set to NULL for default handler.
*/
bool (*encode)(pb_ostream_t *stream, const pb_extension_t *extension);
/* Free field for use by the callback. */
const void *arg;
};
struct pb_extension_s {
/* Type describing the extension field. Usually you'll initialize
* this to a pointer to the automatically generated structure. */
const pb_extension_type_t *type;
/* Destination for the decoded data. This must match the datatype
* of the extension field. */
void *dest;
/* Pointer to the next extension handler, or NULL.
* If this extension does not match a field, the next handler is
* automatically called. */
pb_extension_t *next;
/* The decoder sets this to true if the extension was found.
* Ignored for encoding. */
bool found;
};
#define pb_extension_init_zero {NULL,NULL,NULL,false}
/* Memory allocation functions to use. You can define pb_realloc and
* pb_free to custom functions if you want. */
#ifdef PB_ENABLE_MALLOC
# ifndef pb_realloc
# define pb_realloc(ptr, size) realloc(ptr, size)
# endif
# ifndef pb_free
# define pb_free(ptr) free(ptr)
# endif
#endif
/* This is used to inform about need to regenerate .pb.h/.pb.c files. */
#define PB_PROTO_HEADER_VERSION 40
/* These macros are used to declare pb_field_t's in the constant array. */
/* Size of a structure member, in bytes. */
#define pb_membersize(st, m) (sizeof ((st*)0)->m)
/* Number of entries in an array. */
#define pb_arraysize(st, m) (pb_membersize(st, m) / pb_membersize(st, m[0]))
/* Delta from start of one member to the start of another member. */
#define pb_delta(st, m1, m2) ((int)offsetof(st, m1) - (int)offsetof(st, m2))
/* Force expansion of macro value */
#define PB_EXPAND(x) x
/* Binding of a message field set into a specific structure */
#define PB_BIND(msgname, structname, width) \
const uint32_t structname ## _field_info[] PB_PROGMEM = \
{ \
msgname ## _FIELDLIST(PB_GEN_FIELD_INFO_ ## width, structname) \
0 \
}; \
const pb_msgdesc_t* const structname ## _submsg_info[] = \
{ \
msgname ## _FIELDLIST(PB_GEN_SUBMSG_INFO, structname) \
NULL \
}; \
const pb_msgdesc_t structname ## _msg = \
{ \
0 msgname ## _FIELDLIST(PB_GEN_FIELD_COUNT, structname), \
structname ## _field_info, \
structname ## _submsg_info, \
msgname ## _DEFAULT, \
msgname ## _CALLBACK, \
}; \
msgname ## _FIELDLIST(PB_GEN_FIELD_INFO_ASSERT_ ## width, structname)
#define PB_GEN_FIELD_COUNT(structname, atype, htype, ltype, fieldname, tag) +1
/* X-macro for generating the entries in struct_field_info[] array. */
#define PB_GEN_FIELD_INFO_1(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_1(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_2(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_2(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_4(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_4(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_8(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_8(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_AUTO(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_AUTO2(PB_FIELDINFO_WIDTH_AUTO(_PB_ATYPE_ ## atype, _PB_HTYPE_ ## htype, _PB_LTYPE_ ## ltype), \
tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_FIELDINFO_AUTO2(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size)
#define PB_FIELDINFO_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_ ## width(tag, type, data_offset, data_size, size_offset, array_size)
/* X-macro for generating asserts that entries fit in struct_field_info[] array.
* The structure of macros here must match the structure above in PB_GEN_FIELD_INFO_x(),
* but it is not easily reused because of how macro substitutions work. */
#define PB_GEN_FIELD_INFO_ASSERT_1(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_1(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_2(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_2(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_4(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_4(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_8(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_8(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_AUTO(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_AUTO2(PB_FIELDINFO_WIDTH_AUTO(_PB_ATYPE_ ## atype, _PB_HTYPE_ ## htype, _PB_LTYPE_ ## ltype), \
tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_FIELDINFO_ASSERT_AUTO2(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_ASSERT_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size)
#define PB_FIELDINFO_ASSERT_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_ASSERT_ ## width(tag, type, data_offset, data_size, size_offset, array_size)
#define PB_DATA_OFFSET_STATIC(htype, structname, fieldname) PB_DO ## htype(structname, fieldname)
#define PB_DATA_OFFSET_POINTER(htype, structname, fieldname) PB_DO ## htype(structname, fieldname)
#define PB_DATA_OFFSET_CALLBACK(htype, structname, fieldname) PB_DO ## htype(structname, fieldname)
#define PB_DO_PB_HTYPE_REQUIRED(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_SINGULAR(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_ONEOF(structname, fieldname) offsetof(structname, PB_ONEOF_NAME(FULL, fieldname))
#define PB_DO_PB_HTYPE_OPTIONAL(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_REPEATED(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_FIXARRAY(structname, fieldname) offsetof(structname, fieldname)
#define PB_SIZE_OFFSET_STATIC(htype, structname, fieldname) PB_SO ## htype(structname, fieldname)
#define PB_SIZE_OFFSET_POINTER(htype, structname, fieldname) PB_SO_PTR ## htype(structname, fieldname)
#define PB_SIZE_OFFSET_CALLBACK(htype, structname, fieldname) PB_SO_CB ## htype(structname, fieldname)
#define PB_SO_PB_HTYPE_REQUIRED(structname, fieldname) 0
#define PB_SO_PB_HTYPE_SINGULAR(structname, fieldname) 0
#define PB_SO_PB_HTYPE_ONEOF(structname, fieldname) PB_SO_PB_HTYPE_ONEOF2(structname, PB_ONEOF_NAME(FULL, fieldname), PB_ONEOF_NAME(UNION, fieldname))
#define PB_SO_PB_HTYPE_ONEOF2(structname, fullname, unionname) PB_SO_PB_HTYPE_ONEOF3(structname, fullname, unionname)
#define PB_SO_PB_HTYPE_ONEOF3(structname, fullname, unionname) pb_delta(structname, fullname, which_ ## unionname)
#define PB_SO_PB_HTYPE_OPTIONAL(structname, fieldname) pb_delta(structname, fieldname, has_ ## fieldname)
#define PB_SO_PB_HTYPE_REPEATED(structname, fieldname) pb_delta(structname, fieldname, fieldname ## _count)
#define PB_SO_PB_HTYPE_FIXARRAY(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_REQUIRED(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_SINGULAR(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_ONEOF(structname, fieldname) PB_SO_PB_HTYPE_ONEOF(structname, fieldname)
#define PB_SO_PTR_PB_HTYPE_OPTIONAL(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_REPEATED(structname, fieldname) PB_SO_PB_HTYPE_REPEATED(structname, fieldname)
#define PB_SO_PTR_PB_HTYPE_FIXARRAY(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_REQUIRED(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_SINGULAR(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_ONEOF(structname, fieldname) PB_SO_PB_HTYPE_ONEOF(structname, fieldname)
#define PB_SO_CB_PB_HTYPE_OPTIONAL(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_REPEATED(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_FIXARRAY(structname, fieldname) 0
#define PB_ARRAY_SIZE_STATIC(htype, structname, fieldname) PB_AS ## htype(structname, fieldname)
#define PB_ARRAY_SIZE_POINTER(htype, structname, fieldname) PB_AS_PTR ## htype(structname, fieldname)
#define PB_ARRAY_SIZE_CALLBACK(htype, structname, fieldname) 1
#define PB_AS_PB_HTYPE_REQUIRED(structname, fieldname) 1
#define PB_AS_PB_HTYPE_SINGULAR(structname, fieldname) 1
#define PB_AS_PB_HTYPE_OPTIONAL(structname, fieldname) 1
#define PB_AS_PB_HTYPE_ONEOF(structname, fieldname) 1
#define PB_AS_PB_HTYPE_REPEATED(structname, fieldname) pb_arraysize(structname, fieldname)
#define PB_AS_PB_HTYPE_FIXARRAY(structname, fieldname) pb_arraysize(structname, fieldname)
#define PB_AS_PTR_PB_HTYPE_REQUIRED(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_SINGULAR(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_OPTIONAL(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_ONEOF(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_REPEATED(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_FIXARRAY(structname, fieldname) pb_arraysize(structname, fieldname[0])
#define PB_DATA_SIZE_STATIC(htype, structname, fieldname) PB_DS ## htype(structname, fieldname)
#define PB_DATA_SIZE_POINTER(htype, structname, fieldname) PB_DS_PTR ## htype(structname, fieldname)
#define PB_DATA_SIZE_CALLBACK(htype, structname, fieldname) PB_DS_CB ## htype(structname, fieldname)
#define PB_DS_PB_HTYPE_REQUIRED(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_PB_HTYPE_SINGULAR(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_PB_HTYPE_OPTIONAL(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_PB_HTYPE_ONEOF(structname, fieldname) pb_membersize(structname, PB_ONEOF_NAME(FULL, fieldname))
#define PB_DS_PB_HTYPE_REPEATED(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PB_HTYPE_FIXARRAY(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_REQUIRED(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_SINGULAR(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_OPTIONAL(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_ONEOF(structname, fieldname) pb_membersize(structname, PB_ONEOF_NAME(FULL, fieldname)[0])
#define PB_DS_PTR_PB_HTYPE_REPEATED(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_FIXARRAY(structname, fieldname) pb_membersize(structname, fieldname[0][0])
#define PB_DS_CB_PB_HTYPE_REQUIRED(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_SINGULAR(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_OPTIONAL(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_ONEOF(structname, fieldname) pb_membersize(structname, PB_ONEOF_NAME(FULL, fieldname))
#define PB_DS_CB_PB_HTYPE_REPEATED(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_FIXARRAY(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_ONEOF_NAME(type, tuple) PB_EXPAND(PB_ONEOF_NAME_ ## type tuple)
#define PB_ONEOF_NAME_UNION(unionname,membername,fullname) unionname
#define PB_ONEOF_NAME_MEMBER(unionname,membername,fullname) membername
#define PB_ONEOF_NAME_FULL(unionname,membername,fullname) fullname
#define PB_GEN_SUBMSG_INFO(structname, atype, htype, ltype, fieldname, tag) \
PB_SUBMSG_INFO_ ## htype(_PB_LTYPE_ ## ltype, structname, fieldname)
#define PB_SUBMSG_INFO_REQUIRED(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_SINGULAR(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_OPTIONAL(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_ONEOF(ltype, structname, fieldname) PB_SUBMSG_INFO_ONEOF2(ltype, structname, PB_ONEOF_NAME(UNION, fieldname), PB_ONEOF_NAME(MEMBER, fieldname))
#define PB_SUBMSG_INFO_ONEOF2(ltype, structname, unionname, membername) PB_SUBMSG_INFO_ONEOF3(ltype, structname, unionname, membername)
#define PB_SUBMSG_INFO_ONEOF3(ltype, structname, unionname, membername) PB_SI ## ltype(structname ## _ ## unionname ## _ ## membername ## _MSGTYPE)
#define PB_SUBMSG_INFO_REPEATED(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_FIXARRAY(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SI_PB_LTYPE_BOOL(t)
#define PB_SI_PB_LTYPE_BYTES(t)
#define PB_SI_PB_LTYPE_DOUBLE(t)
#define PB_SI_PB_LTYPE_ENUM(t)
#define PB_SI_PB_LTYPE_UENUM(t)
#define PB_SI_PB_LTYPE_FIXED32(t)
#define PB_SI_PB_LTYPE_FIXED64(t)
#define PB_SI_PB_LTYPE_FLOAT(t)
#define PB_SI_PB_LTYPE_INT32(t)
#define PB_SI_PB_LTYPE_INT64(t)
#define PB_SI_PB_LTYPE_MESSAGE(t) PB_SUBMSG_DESCRIPTOR(t)
#define PB_SI_PB_LTYPE_MSG_W_CB(t) PB_SUBMSG_DESCRIPTOR(t)
#define PB_SI_PB_LTYPE_SFIXED32(t)
#define PB_SI_PB_LTYPE_SFIXED64(t)
#define PB_SI_PB_LTYPE_SINT32(t)
#define PB_SI_PB_LTYPE_SINT64(t)
#define PB_SI_PB_LTYPE_STRING(t)
#define PB_SI_PB_LTYPE_UINT32(t)
#define PB_SI_PB_LTYPE_UINT64(t)
#define PB_SI_PB_LTYPE_EXTENSION(t)
#define PB_SI_PB_LTYPE_FIXED_LENGTH_BYTES(t)
#define PB_SUBMSG_DESCRIPTOR(t) &(t ## _msg),
/* The field descriptors use a variable width format, with width of either
* 1, 2, 4 or 8 of 32-bit words. The two lowest bytes of the first byte always
* encode the descriptor size, 6 lowest bits of field tag number, and 8 bits
* of the field type.
*
* Descriptor size is encoded as 0 = 1 word, 1 = 2 words, 2 = 4 words, 3 = 8 words.
*
* Formats, listed starting with the least significant bit of the first word.
* 1 word: [2-bit len] [6-bit tag] [8-bit type] [8-bit data_offset] [4-bit size_offset] [4-bit data_size]
*
* 2 words: [2-bit len] [6-bit tag] [8-bit type] [12-bit array_size] [4-bit size_offset]
* [16-bit data_offset] [12-bit data_size] [4-bit tag>>6]
*
* 4 words: [2-bit len] [6-bit tag] [8-bit type] [16-bit array_size]
* [8-bit size_offset] [24-bit tag>>6]
* [32-bit data_offset]
* [32-bit data_size]
*
* 8 words: [2-bit len] [6-bit tag] [8-bit type] [16-bit reserved]
* [8-bit size_offset] [24-bit tag>>6]
* [32-bit data_offset]
* [32-bit data_size]
* [32-bit array_size]
* [32-bit reserved]
* [32-bit reserved]
* [32-bit reserved]
*/
#define PB_FIELDINFO_1(tag, type, data_offset, data_size, size_offset, array_size) \
(0 | (((tag) << 2) & 0xFF) | ((type) << 8) | (((uint32_t)(data_offset) & 0xFF) << 16) | \
(((uint32_t)(size_offset) & 0x0F) << 24) | (((uint32_t)(data_size) & 0x0F) << 28)),
#define PB_FIELDINFO_2(tag, type, data_offset, data_size, size_offset, array_size) \
(1 | (((tag) << 2) & 0xFF) | ((type) << 8) | (((uint32_t)(array_size) & 0xFFF) << 16) | (((uint32_t)(size_offset) & 0x0F) << 28)), \
(((uint32_t)(data_offset) & 0xFFFF) | (((uint32_t)(data_size) & 0xFFF) << 16) | (((uint32_t)(tag) & 0x3c0) << 22)),
#define PB_FIELDINFO_4(tag, type, data_offset, data_size, size_offset, array_size) \
(2 | (((tag) << 2) & 0xFF) | ((type) << 8) | (((uint32_t)(array_size) & 0xFFFF) << 16)), \
((uint32_t)(int_least8_t)(size_offset) | (((uint32_t)(tag) << 2) & 0xFFFFFF00)), \
(data_offset), (data_size),
#define PB_FIELDINFO_8(tag, type, data_offset, data_size, size_offset, array_size) \
(3 | (((tag) << 2) & 0xFF) | ((type) << 8)), \
((uint32_t)(int_least8_t)(size_offset) | (((uint32_t)(tag) << 2) & 0xFFFFFF00)), \
(data_offset), (data_size), (array_size), 0, 0, 0,
/* These assertions verify that the field information fits in the allocated space.
* The generator tries to automatically determine the correct width that can fit all
* data associated with a message. These asserts will fail only if there has been a
* problem in the automatic logic - this may be worth reporting as a bug. As a workaround,
* you can increase the descriptor width by defining PB_FIELDINFO_WIDTH or by setting
* descriptorsize option in .options file.
*/
#define PB_FITS(value,bits) ((uint32_t)(value) < ((uint32_t)1<<bits))
#define PB_FIELDINFO_ASSERT_1(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,6) && PB_FITS(data_offset,8) && PB_FITS(size_offset,4) && PB_FITS(data_size,4) && PB_FITS(array_size,1), FIELDINFO_DOES_NOT_FIT_width1_field ## tag)
#define PB_FIELDINFO_ASSERT_2(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,10) && PB_FITS(data_offset,16) && PB_FITS(size_offset,4) && PB_FITS(data_size,12) && PB_FITS(array_size,12), FIELDINFO_DOES_NOT_FIT_width2_field ## tag)
#ifndef PB_FIELD_32BIT
/* Maximum field sizes are still 16-bit if pb_size_t is 16-bit */
#define PB_FIELDINFO_ASSERT_4(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,16) && PB_FITS(data_offset,16) && PB_FITS((int_least8_t)size_offset,8) && PB_FITS(data_size,16) && PB_FITS(array_size,16), FIELDINFO_DOES_NOT_FIT_width4_field ## tag)
#define PB_FIELDINFO_ASSERT_8(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,16) && PB_FITS(data_offset,16) && PB_FITS((int_least8_t)size_offset,8) && PB_FITS(data_size,16) && PB_FITS(array_size,16), FIELDINFO_DOES_NOT_FIT_width8_field ## tag)
#else
/* Up to 32-bit fields supported.
* Note that the checks are against 31 bits to avoid compiler warnings about shift wider than type in the test.
* I expect that there is no reasonable use for >2GB messages with nanopb anyway.
*/
#define PB_FIELDINFO_ASSERT_4(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,30) && PB_FITS(data_offset,31) && PB_FITS(size_offset,8) && PB_FITS(data_size,31) && PB_FITS(array_size,16), FIELDINFO_DOES_NOT_FIT_width4_field ## tag)
#define PB_FIELDINFO_ASSERT_8(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,30) && PB_FITS(data_offset,31) && PB_FITS(size_offset,8) && PB_FITS(data_size,31) && PB_FITS(array_size,31), FIELDINFO_DOES_NOT_FIT_width8_field ## tag)
#endif
/* Automatic picking of FIELDINFO width:
* Uses width 1 when possible, otherwise resorts to width 2.
* This is used when PB_BIND() is called with "AUTO" as the argument.
* The generator will give explicit size argument when it knows that a message
* structure grows beyond 1-word format limits.
*/
#define PB_FIELDINFO_WIDTH_AUTO(atype, htype, ltype) PB_FI_WIDTH ## atype(htype, ltype)
#define PB_FI_WIDTH_PB_ATYPE_STATIC(htype, ltype) PB_FI_WIDTH ## htype(ltype)
#define PB_FI_WIDTH_PB_ATYPE_POINTER(htype, ltype) PB_FI_WIDTH ## htype(ltype)
#define PB_FI_WIDTH_PB_ATYPE_CALLBACK(htype, ltype) 2
#define PB_FI_WIDTH_PB_HTYPE_REQUIRED(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_SINGULAR(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_OPTIONAL(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_ONEOF(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_REPEATED(ltype) 2
#define PB_FI_WIDTH_PB_HTYPE_FIXARRAY(ltype) 2
#define PB_FI_WIDTH_PB_LTYPE_BOOL 1
#define PB_FI_WIDTH_PB_LTYPE_BYTES 2
#define PB_FI_WIDTH_PB_LTYPE_DOUBLE 1
#define PB_FI_WIDTH_PB_LTYPE_ENUM 1
#define PB_FI_WIDTH_PB_LTYPE_UENUM 1
#define PB_FI_WIDTH_PB_LTYPE_FIXED32 1
#define PB_FI_WIDTH_PB_LTYPE_FIXED64 1
#define PB_FI_WIDTH_PB_LTYPE_FLOAT 1
#define PB_FI_WIDTH_PB_LTYPE_INT32 1
#define PB_FI_WIDTH_PB_LTYPE_INT64 1
#define PB_FI_WIDTH_PB_LTYPE_MESSAGE 2
#define PB_FI_WIDTH_PB_LTYPE_MSG_W_CB 2
#define PB_FI_WIDTH_PB_LTYPE_SFIXED32 1
#define PB_FI_WIDTH_PB_LTYPE_SFIXED64 1
#define PB_FI_WIDTH_PB_LTYPE_SINT32 1
#define PB_FI_WIDTH_PB_LTYPE_SINT64 1
#define PB_FI_WIDTH_PB_LTYPE_STRING 2
#define PB_FI_WIDTH_PB_LTYPE_UINT32 1
#define PB_FI_WIDTH_PB_LTYPE_UINT64 1
#define PB_FI_WIDTH_PB_LTYPE_EXTENSION 1
#define PB_FI_WIDTH_PB_LTYPE_FIXED_LENGTH_BYTES 2
/* The mapping from protobuf types to LTYPEs is done using these macros. */
#define PB_LTYPE_MAP_BOOL PB_LTYPE_BOOL
#define PB_LTYPE_MAP_BYTES PB_LTYPE_BYTES
#define PB_LTYPE_MAP_DOUBLE PB_LTYPE_FIXED64
#define PB_LTYPE_MAP_ENUM PB_LTYPE_VARINT
#define PB_LTYPE_MAP_UENUM PB_LTYPE_UVARINT
#define PB_LTYPE_MAP_FIXED32 PB_LTYPE_FIXED32
#define PB_LTYPE_MAP_FIXED64 PB_LTYPE_FIXED64
#define PB_LTYPE_MAP_FLOAT PB_LTYPE_FIXED32
#define PB_LTYPE_MAP_INT32 PB_LTYPE_VARINT
#define PB_LTYPE_MAP_INT64 PB_LTYPE_VARINT
#define PB_LTYPE_MAP_MESSAGE PB_LTYPE_SUBMESSAGE
#define PB_LTYPE_MAP_MSG_W_CB PB_LTYPE_SUBMSG_W_CB
#define PB_LTYPE_MAP_SFIXED32 PB_LTYPE_FIXED32
#define PB_LTYPE_MAP_SFIXED64 PB_LTYPE_FIXED64
#define PB_LTYPE_MAP_SINT32 PB_LTYPE_SVARINT
#define PB_LTYPE_MAP_SINT64 PB_LTYPE_SVARINT
#define PB_LTYPE_MAP_STRING PB_LTYPE_STRING
#define PB_LTYPE_MAP_UINT32 PB_LTYPE_UVARINT
#define PB_LTYPE_MAP_UINT64 PB_LTYPE_UVARINT
#define PB_LTYPE_MAP_EXTENSION PB_LTYPE_EXTENSION
#define PB_LTYPE_MAP_FIXED_LENGTH_BYTES PB_LTYPE_FIXED_LENGTH_BYTES
/* These macros are used for giving out error messages.
* They are mostly a debugging aid; the main error information
* is the true/false return value from functions.
* Some code space can be saved by disabling the error
* messages if not used.
*
* PB_SET_ERROR() sets the error message if none has been set yet.
* msg must be a constant string literal.
* PB_GET_ERROR() always returns a pointer to a string.
* PB_RETURN_ERROR() sets the error and returns false from current
* function.
*/
#ifdef PB_NO_ERRMSG
#define PB_SET_ERROR(stream, msg) PB_UNUSED(stream)
#define PB_GET_ERROR(stream) "(errmsg disabled)"
#else
#define PB_SET_ERROR(stream, msg) (stream->errmsg = (stream)->errmsg ? (stream)->errmsg : (msg))
#define PB_GET_ERROR(stream) ((stream)->errmsg ? (stream)->errmsg : "(none)")
#endif
#define PB_RETURN_ERROR(stream, msg) return PB_SET_ERROR(stream, msg), false
#ifdef __cplusplus
} /* extern "C" */
#endif
#ifdef __cplusplus
#if __cplusplus >= 201103L
#define PB_CONSTEXPR constexpr
#else // __cplusplus >= 201103L
#define PB_CONSTEXPR
#endif // __cplusplus >= 201103L
#if __cplusplus >= 201703L
#define PB_INLINE_CONSTEXPR inline constexpr
#else // __cplusplus >= 201703L
#define PB_INLINE_CONSTEXPR PB_CONSTEXPR
#endif // __cplusplus >= 201703L
namespace nanopb {
// Each type will be partially specialized by the generator.
template <typename GenMessageT> struct MessageDescriptor;
} // namespace nanopb
#endif /* __cplusplus */
#endif

View File

@ -0,0 +1,345 @@
/* pb_common.c: Common support functions for pb_encode.c and pb_decode.c.
*
* 2014 Petteri Aimonen <jpa@kapsi.fi>
*/
#include "pb_common.h"
static bool load_descriptor_values(pb_field_iter_t *iter)
{
uint32_t word0;
uint32_t data_offset;
uint_least8_t format;
int_least8_t size_offset;
if (iter->index >= iter->descriptor->field_count)
return false;
word0 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);
format = word0 & 3;
iter->tag = (pb_size_t)((word0 >> 2) & 0x3F);
iter->type = (pb_type_t)((word0 >> 8) & 0xFF);
if (format == 0)
{
/* 1-word format */
iter->array_size = 1;
size_offset = (int_least8_t)((word0 >> 24) & 0x0F);
data_offset = (word0 >> 16) & 0xFF;
iter->data_size = (pb_size_t)((word0 >> 28) & 0x0F);
}
else if (format == 1)
{
/* 2-word format */
uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);
iter->array_size = (pb_size_t)((word0 >> 16) & 0x0FFF);
iter->tag = (pb_size_t)(iter->tag | ((word1 >> 28) << 6));
size_offset = (int_least8_t)((word0 >> 28) & 0x0F);
data_offset = word1 & 0xFFFF;
iter->data_size = (pb_size_t)((word1 >> 16) & 0x0FFF);
}
else if (format == 2)
{
/* 4-word format */
uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);
uint32_t word2 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 2]);
uint32_t word3 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 3]);
iter->array_size = (pb_size_t)(word0 >> 16);
iter->tag = (pb_size_t)(iter->tag | ((word1 >> 8) << 6));
size_offset = (int_least8_t)(word1 & 0xFF);
data_offset = word2;
iter->data_size = (pb_size_t)word3;
}
else
{
/* 8-word format */
uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);
uint32_t word2 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 2]);
uint32_t word3 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 3]);
uint32_t word4 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 4]);
iter->array_size = (pb_size_t)word4;
iter->tag = (pb_size_t)(iter->tag | ((word1 >> 8) << 6));
size_offset = (int_least8_t)(word1 & 0xFF);
data_offset = word2;
iter->data_size = (pb_size_t)word3;
}
if (!iter->message)
{
/* Avoid doing arithmetic on null pointers, it is undefined */
iter->pField = NULL;
iter->pSize = NULL;
}
else
{
iter->pField = (char*)iter->message + data_offset;
if (size_offset)
{
iter->pSize = (char*)iter->pField - size_offset;
}
else if (PB_HTYPE(iter->type) == PB_HTYPE_REPEATED &&
(PB_ATYPE(iter->type) == PB_ATYPE_STATIC ||
PB_ATYPE(iter->type) == PB_ATYPE_POINTER))
{
/* Fixed count array */
iter->pSize = &iter->array_size;
}
else
{
iter->pSize = NULL;
}
if (PB_ATYPE(iter->type) == PB_ATYPE_POINTER && iter->pField != NULL)
{
iter->pData = *(void**)iter->pField;
}
else
{
iter->pData = iter->pField;
}
}
if (PB_LTYPE_IS_SUBMSG(iter->type))
{
iter->submsg_desc = iter->descriptor->submsg_info[iter->submessage_index];
}
else
{
iter->submsg_desc = NULL;
}
return true;
}
static void advance_iterator(pb_field_iter_t *iter)
{
iter->index++;
if (iter->index >= iter->descriptor->field_count)
{
/* Restart */
iter->index = 0;
iter->field_info_index = 0;
iter->submessage_index = 0;
iter->required_field_index = 0;
}
else
{
/* Increment indexes based on previous field type.
* All field info formats have the following fields:
* - lowest 2 bits tell the amount of words in the descriptor (2^n words)
* - bits 2..7 give the lowest bits of tag number.
* - bits 8..15 give the field type.
*/
uint32_t prev_descriptor = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);
pb_type_t prev_type = (prev_descriptor >> 8) & 0xFF;
pb_size_t descriptor_len = (pb_size_t)(1 << (prev_descriptor & 3));
iter->field_info_index = (pb_size_t)(iter->field_info_index + descriptor_len);
if (PB_HTYPE(prev_type) == PB_HTYPE_REQUIRED)
{
iter->required_field_index++;
}
if (PB_LTYPE_IS_SUBMSG(prev_type))
{
iter->submessage_index++;
}
}
}
bool pb_field_iter_begin(pb_field_iter_t *iter, const pb_msgdesc_t *desc, void *message)
{
memset(iter, 0, sizeof(*iter));
iter->descriptor = desc;
iter->message = message;
return load_descriptor_values(iter);
}
bool pb_field_iter_begin_extension(pb_field_iter_t *iter, pb_extension_t *extension)
{
const pb_msgdesc_t *msg = (const pb_msgdesc_t*)extension->type->arg;
bool status;
uint32_t word0 = PB_PROGMEM_READU32(msg->field_info[0]);
if (PB_ATYPE(word0 >> 8) == PB_ATYPE_POINTER)
{
/* For pointer extensions, the pointer is stored directly
* in the extension structure. This avoids having an extra
* indirection. */
status = pb_field_iter_begin(iter, msg, &extension->dest);
}
else
{
status = pb_field_iter_begin(iter, msg, extension->dest);
}
iter->pSize = &extension->found;
return status;
}
bool pb_field_iter_next(pb_field_iter_t *iter)
{
advance_iterator(iter);
(void)load_descriptor_values(iter);
return iter->index != 0;
}
bool pb_field_iter_find(pb_field_iter_t *iter, uint32_t tag)
{
if (iter->tag == tag)
{
return true; /* Nothing to do, correct field already. */
}
else
{
pb_size_t start = iter->index;
uint32_t fieldinfo;
do
{
/* Advance iterator but don't load values yet */
advance_iterator(iter);
/* Do fast check for tag number match */
fieldinfo = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);
if (((fieldinfo >> 2) & 0x3F) == (tag & 0x3F))
{
/* Good candidate, check further */
(void)load_descriptor_values(iter);
if (iter->tag == tag &&
PB_LTYPE(iter->type) != PB_LTYPE_EXTENSION)
{
/* Found it */
return true;
}
}
} while (iter->index != start);
/* Searched all the way back to start, and found nothing. */
(void)load_descriptor_values(iter);
return false;
}
}
static void *pb_const_cast(const void *p)
{
/* Note: this casts away const, in order to use the common field iterator
* logic for both encoding and decoding. The cast is done using union
* to avoid spurious compiler warnings. */
union {
void *p1;
const void *p2;
} t;
t.p2 = p;
return t.p1;
}
bool pb_field_iter_begin_const(pb_field_iter_t *iter, const pb_msgdesc_t *desc, const void *message)
{
return pb_field_iter_begin(iter, desc, pb_const_cast(message));
}
bool pb_field_iter_begin_extension_const(pb_field_iter_t *iter, const pb_extension_t *extension)
{
return pb_field_iter_begin_extension(iter, (pb_extension_t*)pb_const_cast(extension));
}
bool pb_default_field_callback(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_t *field)
{
if (field->data_size == sizeof(pb_callback_t))
{
pb_callback_t *pCallback = (pb_callback_t*)field->pData;
if (pCallback != NULL)
{
if (istream != NULL && pCallback->funcs.decode != NULL)
{
return pCallback->funcs.decode(istream, field, &pCallback->arg);
}
if (ostream != NULL && pCallback->funcs.encode != NULL)
{
return pCallback->funcs.encode(ostream, field, &pCallback->arg);
}
}
}
return true; /* Success, but didn't do anything */
}
#ifdef PB_VALIDATE_UTF8
/* This function checks whether a string is valid UTF-8 text.
*
* Algorithm is adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c
* Original copyright: Markus Kuhn <http://www.cl.cam.ac.uk/~mgk25/> 2005-03-30
* Licensed under "Short code license", which allows use under MIT license or
* any compatible with it.
*/
bool pb_validate_utf8(const char *str)
{
const pb_byte_t *s = (const pb_byte_t*)str;
while (*s)
{
if (*s < 0x80)
{
/* 0xxxxxxx */
s++;
}
else if ((s[0] & 0xe0) == 0xc0)
{
/* 110XXXXx 10xxxxxx */
if ((s[1] & 0xc0) != 0x80 ||
(s[0] & 0xfe) == 0xc0) /* overlong? */
return false;
else
s += 2;
}
else if ((s[0] & 0xf0) == 0xe0)
{
/* 1110XXXX 10Xxxxxx 10xxxxxx */
if ((s[1] & 0xc0) != 0x80 ||
(s[2] & 0xc0) != 0x80 ||
(s[0] == 0xe0 && (s[1] & 0xe0) == 0x80) || /* overlong? */
(s[0] == 0xed && (s[1] & 0xe0) == 0xa0) || /* surrogate? */
(s[0] == 0xef && s[1] == 0xbf &&
(s[2] & 0xfe) == 0xbe)) /* U+FFFE or U+FFFF? */
return false;
else
s += 3;
}
else if ((s[0] & 0xf8) == 0xf0)
{
/* 11110XXX 10XXxxxx 10xxxxxx 10xxxxxx */
if ((s[1] & 0xc0) != 0x80 ||
(s[2] & 0xc0) != 0x80 ||
(s[3] & 0xc0) != 0x80 ||
(s[0] == 0xf0 && (s[1] & 0xf0) == 0x80) || /* overlong? */
(s[0] == 0xf4 && s[1] > 0x8f) || s[0] > 0xf4) /* > U+10FFFF? */
return false;
else
s += 4;
}
else
{
return false;
}
}
return true;
}
#endif

View File

@ -0,0 +1,45 @@
/* pb_common.h: Common support functions for pb_encode.c and pb_decode.c.
* These functions are rarely needed by applications directly.
*/
#ifndef PB_COMMON_H_INCLUDED
#define PB_COMMON_H_INCLUDED
#include "pb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Initialize the field iterator structure to beginning.
* Returns false if the message type is empty. */
bool pb_field_iter_begin(pb_field_iter_t *iter, const pb_msgdesc_t *desc, void *message);
/* Get a field iterator for extension field. */
bool pb_field_iter_begin_extension(pb_field_iter_t *iter, pb_extension_t *extension);
/* Same as pb_field_iter_begin(), but for const message pointer.
* Note that the pointers in pb_field_iter_t will be non-const but shouldn't
* be written to when using these functions. */
bool pb_field_iter_begin_const(pb_field_iter_t *iter, const pb_msgdesc_t *desc, const void *message);
bool pb_field_iter_begin_extension_const(pb_field_iter_t *iter, const pb_extension_t *extension);
/* Advance the iterator to the next field.
* Returns false when the iterator wraps back to the first field. */
bool pb_field_iter_next(pb_field_iter_t *iter);
/* Advance the iterator until it points at a field with the given tag.
* Returns false if no such field exists. */
bool pb_field_iter_find(pb_field_iter_t *iter, uint32_t tag);
#ifdef PB_VALIDATE_UTF8
/* Validate UTF-8 text string */
bool pb_validate_utf8(const char *s);
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,196 @@
/* pb_decode.h: Functions to decode protocol buffers. Depends on pb_decode.c.
* The main function is pb_decode. You also need an input stream, and the
* field descriptions created by nanopb_generator.py.
*/
#ifndef PB_DECODE_H_INCLUDED
#define PB_DECODE_H_INCLUDED
#include "pb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Structure for defining custom input streams. You will need to provide
* a callback function to read the bytes from your storage, which can be
* for example a file or a network socket.
*
* The callback must conform to these rules:
*
* 1) Return false on IO errors. This will cause decoding to abort.
* 2) You can use state to store your own data (e.g. buffer pointer),
* and rely on pb_read to verify that no-body reads past bytes_left.
* 3) Your callback may be used with substreams, in which case bytes_left
* is different than from the main stream. Don't use bytes_left to compute
* any pointers.
*/
struct pb_istream_s
{
#ifdef PB_BUFFER_ONLY
/* Callback pointer is not used in buffer-only configuration.
* Having an int pointer here allows binary compatibility but
* gives an error if someone tries to assign callback function.
*/
int *callback;
#else
bool (*callback)(pb_istream_t *stream, pb_byte_t *buf, size_t count);
#endif
void *state; /* Free field for use by callback implementation */
size_t bytes_left;
#ifndef PB_NO_ERRMSG
const char *errmsg;
#endif
};
#ifndef PB_NO_ERRMSG
#define PB_ISTREAM_EMPTY {0,0,0,0}
#else
#define PB_ISTREAM_EMPTY {0,0,0}
#endif
/***************************
* Main decoding functions *
***************************/
/* Decode a single protocol buffers message from input stream into a C structure.
* Returns true on success, false on any failure.
* The actual struct pointed to by dest must match the description in fields.
* Callback fields of the destination structure must be initialized by caller.
* All other fields will be initialized by this function.
*
* Example usage:
* MyMessage msg = {};
* uint8_t buffer[64];
* pb_istream_t stream;
*
* // ... read some data into buffer ...
*
* stream = pb_istream_from_buffer(buffer, count);
* pb_decode(&stream, MyMessage_fields, &msg);
*/
bool pb_decode(pb_istream_t *stream, const pb_msgdesc_t *fields, void *dest_struct);
/* Extended version of pb_decode, with several options to control
* the decoding process:
*
* PB_DECODE_NOINIT: Do not initialize the fields to default values.
* This is slightly faster if you do not need the default
* values and instead initialize the structure to 0 using
* e.g. memset(). This can also be used for merging two
* messages, i.e. combine already existing data with new
* values.
*
* PB_DECODE_DELIMITED: Input message starts with the message size as varint.
* Corresponds to parseDelimitedFrom() in Google's
* protobuf API.
*
* PB_DECODE_NULLTERMINATED: Stop reading when field tag is read as 0. This allows
* reading null terminated messages.
* NOTE: Until nanopb-0.4.0, pb_decode() also allows
* null-termination. This behaviour is not supported in
* most other protobuf implementations, so PB_DECODE_DELIMITED
* is a better option for compatibility.
*
* Multiple flags can be combined with bitwise or (| operator)
*/
#define PB_DECODE_NOINIT 0x01U
#define PB_DECODE_DELIMITED 0x02U
#define PB_DECODE_NULLTERMINATED 0x04U
bool pb_decode_ex(pb_istream_t *stream, const pb_msgdesc_t *fields, void *dest_struct, unsigned int flags);
/* Defines for backwards compatibility with code written before nanopb-0.4.0 */
#define pb_decode_noinit(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_NOINIT)
#define pb_decode_delimited(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_DELIMITED)
#define pb_decode_delimited_noinit(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_DELIMITED | PB_DECODE_NOINIT)
#define pb_decode_nullterminated(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_NULLTERMINATED)
#ifdef PB_ENABLE_MALLOC
/* Release any allocated pointer fields. If you use dynamic allocation, you should
* call this for any successfully decoded message when you are done with it. If
* pb_decode() returns with an error, the message is already released.
*/
void pb_release(const pb_msgdesc_t *fields, void *dest_struct);
#endif
/**************************************
* Functions for manipulating streams *
**************************************/
/* Create an input stream for reading from a memory buffer.
*
* msglen should be the actual length of the message, not the full size of
* allocated buffer.
*
* Alternatively, you can use a custom stream that reads directly from e.g.
* a file or a network socket.
*/
pb_istream_t pb_istream_from_buffer(const pb_byte_t *buf, size_t msglen);
/* Function to read from a pb_istream_t. You can use this if you need to
* read some custom header data, or to read data in field callbacks.
*/
bool pb_read(pb_istream_t *stream, pb_byte_t *buf, size_t count);
/************************************************
* Helper functions for writing field callbacks *
************************************************/
/* Decode the tag for the next field in the stream. Gives the wire type and
* field tag. At end of the message, returns false and sets eof to true. */
bool pb_decode_tag(pb_istream_t *stream, pb_wire_type_t *wire_type, uint32_t *tag, bool *eof);
/* Skip the field payload data, given the wire type. */
bool pb_skip_field(pb_istream_t *stream, pb_wire_type_t wire_type);
/* Decode an integer in the varint format. This works for enum, int32,
* int64, uint32 and uint64 field types. */
#ifndef PB_WITHOUT_64BIT
bool pb_decode_varint(pb_istream_t *stream, uint64_t *dest);
#else
#define pb_decode_varint pb_decode_varint32
#endif
/* Decode an integer in the varint format. This works for enum, int32,
* and uint32 field types. */
bool pb_decode_varint32(pb_istream_t *stream, uint32_t *dest);
/* Decode a bool value in varint format. */
bool pb_decode_bool(pb_istream_t *stream, bool *dest);
/* Decode an integer in the zig-zagged svarint format. This works for sint32
* and sint64. */
#ifndef PB_WITHOUT_64BIT
bool pb_decode_svarint(pb_istream_t *stream, int64_t *dest);
#else
bool pb_decode_svarint(pb_istream_t *stream, int32_t *dest);
#endif
/* Decode a fixed32, sfixed32 or float value. You need to pass a pointer to
* a 4-byte wide C variable. */
bool pb_decode_fixed32(pb_istream_t *stream, void *dest);
#ifndef PB_WITHOUT_64BIT
/* Decode a fixed64, sfixed64 or double value. You need to pass a pointer to
* a 8-byte wide C variable. */
bool pb_decode_fixed64(pb_istream_t *stream, void *dest);
#endif
#ifdef PB_CONVERT_DOUBLE_FLOAT
/* Decode a double value into float variable. */
bool pb_decode_double_as_float(pb_istream_t *stream, float *dest);
#endif
/* Make a limited-length substream for reading a PB_WT_STRING field. */
bool pb_make_string_substream(pb_istream_t *stream, pb_istream_t *substream);
bool pb_close_string_substream(pb_istream_t *stream, pb_istream_t *substream);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

View File

@ -0,0 +1,978 @@
/* pb_encode.c -- encode a protobuf using minimal resources
*
* 2011 Petteri Aimonen <jpa@kapsi.fi>
*/
#include "pb.h"
#include "pb_encode.h"
#include "pb_common.h"
/* Use the GCC warn_unused_result attribute to check that all return values
* are propagated correctly. On other compilers and gcc before 3.4.0 just
* ignore the annotation.
*/
#if !defined(__GNUC__) || ( __GNUC__ < 3) || (__GNUC__ == 3 && __GNUC_MINOR__ < 4)
#define checkreturn
#else
#define checkreturn __attribute__((warn_unused_result))
#endif
/**************************************
* Declarations internal to this file *
**************************************/
static bool checkreturn buf_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count);
static bool checkreturn encode_array(pb_ostream_t *stream, pb_field_iter_t *field);
static bool checkreturn pb_check_proto3_default_value(const pb_field_iter_t *field);
static bool checkreturn encode_basic_field(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn encode_callback_field(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn encode_field(pb_ostream_t *stream, pb_field_iter_t *field);
static bool checkreturn encode_extension_field(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn default_extension_encoder(pb_ostream_t *stream, const pb_extension_t *extension);
static bool checkreturn pb_encode_varint_32(pb_ostream_t *stream, uint32_t low, uint32_t high);
static bool checkreturn pb_enc_bool(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_varint(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_fixed(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_bytes(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_string(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_submessage(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_fixed_length_bytes(pb_ostream_t *stream, const pb_field_iter_t *field);
#ifdef PB_WITHOUT_64BIT
#define pb_int64_t int32_t
#define pb_uint64_t uint32_t
#else
#define pb_int64_t int64_t
#define pb_uint64_t uint64_t
#endif
/*******************************
* pb_ostream_t implementation *
*******************************/
static bool checkreturn buf_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
size_t i;
pb_byte_t *dest = (pb_byte_t*)stream->state;
stream->state = dest + count;
for (i = 0; i < count; i++)
dest[i] = buf[i];
return true;
}
pb_ostream_t pb_ostream_from_buffer(pb_byte_t *buf, size_t bufsize)
{
pb_ostream_t stream;
#ifdef PB_BUFFER_ONLY
stream.callback = (void*)1; /* Just a marker value */
#else
stream.callback = &buf_write;
#endif
stream.state = buf;
stream.max_size = bufsize;
stream.bytes_written = 0;
#ifndef PB_NO_ERRMSG
stream.errmsg = NULL;
#endif
return stream;
}
bool checkreturn pb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
if (count > 0 && stream->callback != NULL)
{
if (stream->bytes_written + count < stream->bytes_written ||
stream->bytes_written + count > stream->max_size)
{
PB_RETURN_ERROR(stream, "stream full");
}
#ifdef PB_BUFFER_ONLY
if (!buf_write(stream, buf, count))
PB_RETURN_ERROR(stream, "io error");
#else
if (!stream->callback(stream, buf, count))
PB_RETURN_ERROR(stream, "io error");
#endif
}
stream->bytes_written += count;
return true;
}
/*************************
* Encode a single field *
*************************/
/* Read a bool value without causing undefined behavior even if the value
* is invalid. See issue #434 and
* https://stackoverflow.com/questions/27661768/weird-results-for-conditional
*/
static bool safe_read_bool(const void *pSize)
{
const char *p = (const char *)pSize;
size_t i;
for (i = 0; i < sizeof(bool); i++)
{
if (p[i] != 0)
return true;
}
return false;
}
/* Encode a static array. Handles the size calculations and possible packing. */
static bool checkreturn encode_array(pb_ostream_t *stream, pb_field_iter_t *field)
{
pb_size_t i;
pb_size_t count;
#ifndef PB_ENCODE_ARRAYS_UNPACKED
size_t size;
#endif
count = *(pb_size_t*)field->pSize;
if (count == 0)
return true;
if (PB_ATYPE(field->type) != PB_ATYPE_POINTER && count > field->array_size)
PB_RETURN_ERROR(stream, "array max size exceeded");
#ifndef PB_ENCODE_ARRAYS_UNPACKED
/* We always pack arrays if the datatype allows it. */
if (PB_LTYPE(field->type) <= PB_LTYPE_LAST_PACKABLE)
{
if (!pb_encode_tag(stream, PB_WT_STRING, field->tag))
return false;
/* Determine the total size of packed array. */
if (PB_LTYPE(field->type) == PB_LTYPE_FIXED32)
{
size = 4 * (size_t)count;
}
else if (PB_LTYPE(field->type) == PB_LTYPE_FIXED64)
{
size = 8 * (size_t)count;
}
else
{
pb_ostream_t sizestream = PB_OSTREAM_SIZING;
void *pData_orig = field->pData;
for (i = 0; i < count; i++)
{
if (!pb_enc_varint(&sizestream, field))
PB_RETURN_ERROR(stream, PB_GET_ERROR(&sizestream));
field->pData = (char*)field->pData + field->data_size;
}
field->pData = pData_orig;
size = sizestream.bytes_written;
}
if (!pb_encode_varint(stream, (pb_uint64_t)size))
return false;
if (stream->callback == NULL)
return pb_write(stream, NULL, size); /* Just sizing.. */
/* Write the data */
for (i = 0; i < count; i++)
{
if (PB_LTYPE(field->type) == PB_LTYPE_FIXED32 || PB_LTYPE(field->type) == PB_LTYPE_FIXED64)
{
if (!pb_enc_fixed(stream, field))
return false;
}
else
{
if (!pb_enc_varint(stream, field))
return false;
}
field->pData = (char*)field->pData + field->data_size;
}
}
else /* Unpacked fields */
#endif
{
for (i = 0; i < count; i++)
{
/* Normally the data is stored directly in the array entries, but
* for pointer-type string and bytes fields, the array entries are
* actually pointers themselves also. So we have to dereference once
* more to get to the actual data. */
if (PB_ATYPE(field->type) == PB_ATYPE_POINTER &&
(PB_LTYPE(field->type) == PB_LTYPE_STRING ||
PB_LTYPE(field->type) == PB_LTYPE_BYTES))
{
bool status;
void *pData_orig = field->pData;
field->pData = *(void* const*)field->pData;
if (!field->pData)
{
/* Null pointer in array is treated as empty string / bytes */
status = pb_encode_tag_for_field(stream, field) &&
pb_encode_varint(stream, 0);
}
else
{
status = encode_basic_field(stream, field);
}
field->pData = pData_orig;
if (!status)
return false;
}
else
{
if (!encode_basic_field(stream, field))
return false;
}
field->pData = (char*)field->pData + field->data_size;
}
}
return true;
}
/* In proto3, all fields are optional and are only encoded if their value is "non-zero".
* This function implements the check for the zero value. */
static bool checkreturn pb_check_proto3_default_value(const pb_field_iter_t *field)
{
pb_type_t type = field->type;
if (PB_ATYPE(type) == PB_ATYPE_STATIC)
{
if (PB_HTYPE(type) == PB_HTYPE_REQUIRED)
{
/* Required proto2 fields inside proto3 submessage, pretty rare case */
return false;
}
else if (PB_HTYPE(type) == PB_HTYPE_REPEATED)
{
/* Repeated fields inside proto3 submessage: present if count != 0 */
return *(const pb_size_t*)field->pSize == 0;
}
else if (PB_HTYPE(type) == PB_HTYPE_ONEOF)
{
/* Oneof fields */
return *(const pb_size_t*)field->pSize == 0;
}
else if (PB_HTYPE(type) == PB_HTYPE_OPTIONAL && field->pSize != NULL)
{
/* Proto2 optional fields inside proto3 message, or proto3
* submessage fields. */
return safe_read_bool(field->pSize) == false;
}
/* Rest is proto3 singular fields */
if (PB_LTYPE(type) <= PB_LTYPE_LAST_PACKABLE)
{
/* Simple integer / float fields */
pb_size_t i;
const char *p = (const char*)field->pData;
for (i = 0; i < field->data_size; i++)
{
if (p[i] != 0)
{
return false;
}
}
return true;
}
else if (PB_LTYPE(type) == PB_LTYPE_BYTES)
{
const pb_bytes_array_t *bytes = (const pb_bytes_array_t*)field->pData;
return bytes->size == 0;
}
else if (PB_LTYPE(type) == PB_LTYPE_STRING)
{
return *(const char*)field->pData == '\0';
}
else if (PB_LTYPE(type) == PB_LTYPE_FIXED_LENGTH_BYTES)
{
/* Fixed length bytes is only empty if its length is fixed
* as 0. Which would be pretty strange, but we can check
* it anyway. */
return field->data_size == 0;
}
else if (PB_LTYPE_IS_SUBMSG(type))
{
/* Check all fields in the submessage to find if any of them
* are non-zero. The comparison cannot be done byte-per-byte
* because the C struct may contain padding bytes that must
* be skipped. Note that usually proto3 submessages have
* a separate has_field that is checked earlier in this if.
*/
pb_field_iter_t iter;
if (pb_field_iter_begin(&iter, field->submsg_desc, field->pData))
{
do
{
if (!pb_check_proto3_default_value(&iter))
{
return false;
}
} while (pb_field_iter_next(&iter));
}
return true;
}
}
else if (PB_ATYPE(type) == PB_ATYPE_POINTER)
{
return field->pData == NULL;
}
else if (PB_ATYPE(type) == PB_ATYPE_CALLBACK)
{
if (PB_LTYPE(type) == PB_LTYPE_EXTENSION)
{
const pb_extension_t *extension = *(const pb_extension_t* const *)field->pData;
return extension == NULL;
}
else if (field->descriptor->field_callback == pb_default_field_callback)
{
pb_callback_t *pCallback = (pb_callback_t*)field->pData;
return pCallback->funcs.encode == NULL;
}
else
{
return field->descriptor->field_callback == NULL;
}
}
return false; /* Not typically reached, safe default for weird special cases. */
}
/* Encode a field with static or pointer allocation, i.e. one whose data
* is available to the encoder directly. */
static bool checkreturn encode_basic_field(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (!field->pData)
{
/* Missing pointer field */
return true;
}
if (!pb_encode_tag_for_field(stream, field))
return false;
switch (PB_LTYPE(field->type))
{
case PB_LTYPE_BOOL:
return pb_enc_bool(stream, field);
case PB_LTYPE_VARINT:
case PB_LTYPE_UVARINT:
case PB_LTYPE_SVARINT:
return pb_enc_varint(stream, field);
case PB_LTYPE_FIXED32:
case PB_LTYPE_FIXED64:
return pb_enc_fixed(stream, field);
case PB_LTYPE_BYTES:
return pb_enc_bytes(stream, field);
case PB_LTYPE_STRING:
return pb_enc_string(stream, field);
case PB_LTYPE_SUBMESSAGE:
case PB_LTYPE_SUBMSG_W_CB:
return pb_enc_submessage(stream, field);
case PB_LTYPE_FIXED_LENGTH_BYTES:
return pb_enc_fixed_length_bytes(stream, field);
default:
PB_RETURN_ERROR(stream, "invalid field type");
}
}
/* Encode a field with callback semantics. This means that a user function is
* called to provide and encode the actual data. */
static bool checkreturn encode_callback_field(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (field->descriptor->field_callback != NULL)
{
if (!field->descriptor->field_callback(NULL, stream, field))
PB_RETURN_ERROR(stream, "callback error");
}
return true;
}
/* Encode a single field of any callback, pointer or static type. */
static bool checkreturn encode_field(pb_ostream_t *stream, pb_field_iter_t *field)
{
/* Check field presence */
if (PB_HTYPE(field->type) == PB_HTYPE_ONEOF)
{
if (*(const pb_size_t*)field->pSize != field->tag)
{
/* Different type oneof field */
return true;
}
}
else if (PB_HTYPE(field->type) == PB_HTYPE_OPTIONAL)
{
if (field->pSize)
{
if (safe_read_bool(field->pSize) == false)
{
/* Missing optional field */
return true;
}
}
else if (PB_ATYPE(field->type) == PB_ATYPE_STATIC)
{
/* Proto3 singular field */
if (pb_check_proto3_default_value(field))
return true;
}
}
if (!field->pData)
{
if (PB_HTYPE(field->type) == PB_HTYPE_REQUIRED)
PB_RETURN_ERROR(stream, "missing required field");
/* Pointer field set to NULL */
return true;
}
/* Then encode field contents */
if (PB_ATYPE(field->type) == PB_ATYPE_CALLBACK)
{
return encode_callback_field(stream, field);
}
else if (PB_HTYPE(field->type) == PB_HTYPE_REPEATED)
{
return encode_array(stream, field);
}
else
{
return encode_basic_field(stream, field);
}
}
/* Default handler for extension fields. Expects to have a pb_msgdesc_t
* pointer in the extension->type->arg field, pointing to a message with
* only one field in it. */
static bool checkreturn default_extension_encoder(pb_ostream_t *stream, const pb_extension_t *extension)
{
pb_field_iter_t iter;
if (!pb_field_iter_begin_extension_const(&iter, extension))
PB_RETURN_ERROR(stream, "invalid extension");
return encode_field(stream, &iter);
}
/* Walk through all the registered extensions and give them a chance
* to encode themselves. */
static bool checkreturn encode_extension_field(pb_ostream_t *stream, const pb_field_iter_t *field)
{
const pb_extension_t *extension = *(const pb_extension_t* const *)field->pData;
while (extension)
{
bool status;
if (extension->type->encode)
status = extension->type->encode(stream, extension);
else
status = default_extension_encoder(stream, extension);
if (!status)
return false;
extension = extension->next;
}
return true;
}
/*********************
* Encode all fields *
*********************/
bool checkreturn pb_encode(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct)
{
pb_field_iter_t iter;
if (!pb_field_iter_begin_const(&iter, fields, src_struct))
return true; /* Empty message type */
do {
if (PB_LTYPE(iter.type) == PB_LTYPE_EXTENSION)
{
/* Special case for the extension field placeholder */
if (!encode_extension_field(stream, &iter))
return false;
}
else
{
/* Regular field */
if (!encode_field(stream, &iter))
return false;
}
} while (pb_field_iter_next(&iter));
return true;
}
bool checkreturn pb_encode_ex(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct, unsigned int flags)
{
if ((flags & PB_ENCODE_DELIMITED) != 0)
{
return pb_encode_submessage(stream, fields, src_struct);
}
else if ((flags & PB_ENCODE_NULLTERMINATED) != 0)
{
const pb_byte_t zero = 0;
if (!pb_encode(stream, fields, src_struct))
return false;
return pb_write(stream, &zero, 1);
}
else
{
return pb_encode(stream, fields, src_struct);
}
}
bool pb_get_encoded_size(size_t *size, const pb_msgdesc_t *fields, const void *src_struct)
{
pb_ostream_t stream = PB_OSTREAM_SIZING;
if (!pb_encode(&stream, fields, src_struct))
return false;
*size = stream.bytes_written;
return true;
}
/********************
* Helper functions *
********************/
/* This function avoids 64-bit shifts as they are quite slow on many platforms. */
static bool checkreturn pb_encode_varint_32(pb_ostream_t *stream, uint32_t low, uint32_t high)
{
size_t i = 0;
pb_byte_t buffer[10];
pb_byte_t byte = (pb_byte_t)(low & 0x7F);
low >>= 7;
while (i < 4 && (low != 0 || high != 0))
{
byte |= 0x80;
buffer[i++] = byte;
byte = (pb_byte_t)(low & 0x7F);
low >>= 7;
}
if (high)
{
byte = (pb_byte_t)(byte | ((high & 0x07) << 4));
high >>= 3;
while (high)
{
byte |= 0x80;
buffer[i++] = byte;
byte = (pb_byte_t)(high & 0x7F);
high >>= 7;
}
}
buffer[i++] = byte;
return pb_write(stream, buffer, i);
}
bool checkreturn pb_encode_varint(pb_ostream_t *stream, pb_uint64_t value)
{
if (value <= 0x7F)
{
/* Fast path: single byte */
pb_byte_t byte = (pb_byte_t)value;
return pb_write(stream, &byte, 1);
}
else
{
#ifdef PB_WITHOUT_64BIT
return pb_encode_varint_32(stream, value, 0);
#else
return pb_encode_varint_32(stream, (uint32_t)value, (uint32_t)(value >> 32));
#endif
}
}
bool checkreturn pb_encode_svarint(pb_ostream_t *stream, pb_int64_t value)
{
pb_uint64_t zigzagged;
if (value < 0)
zigzagged = ~((pb_uint64_t)value << 1);
else
zigzagged = (pb_uint64_t)value << 1;
return pb_encode_varint(stream, zigzagged);
}
bool checkreturn pb_encode_fixed32(pb_ostream_t *stream, const void *value)
{
uint32_t val = *(const uint32_t*)value;
pb_byte_t bytes[4];
bytes[0] = (pb_byte_t)(val & 0xFF);
bytes[1] = (pb_byte_t)((val >> 8) & 0xFF);
bytes[2] = (pb_byte_t)((val >> 16) & 0xFF);
bytes[3] = (pb_byte_t)((val >> 24) & 0xFF);
return pb_write(stream, bytes, 4);
}
#ifndef PB_WITHOUT_64BIT
bool checkreturn pb_encode_fixed64(pb_ostream_t *stream, const void *value)
{
uint64_t val = *(const uint64_t*)value;
pb_byte_t bytes[8];
bytes[0] = (pb_byte_t)(val & 0xFF);
bytes[1] = (pb_byte_t)((val >> 8) & 0xFF);
bytes[2] = (pb_byte_t)((val >> 16) & 0xFF);
bytes[3] = (pb_byte_t)((val >> 24) & 0xFF);
bytes[4] = (pb_byte_t)((val >> 32) & 0xFF);
bytes[5] = (pb_byte_t)((val >> 40) & 0xFF);
bytes[6] = (pb_byte_t)((val >> 48) & 0xFF);
bytes[7] = (pb_byte_t)((val >> 56) & 0xFF);
return pb_write(stream, bytes, 8);
}
#endif
bool checkreturn pb_encode_tag(pb_ostream_t *stream, pb_wire_type_t wiretype, uint32_t field_number)
{
pb_uint64_t tag = ((pb_uint64_t)field_number << 3) | wiretype;
return pb_encode_varint(stream, tag);
}
bool pb_encode_tag_for_field ( pb_ostream_t* stream, const pb_field_iter_t* field )
{
pb_wire_type_t wiretype;
switch (PB_LTYPE(field->type))
{
case PB_LTYPE_BOOL:
case PB_LTYPE_VARINT:
case PB_LTYPE_UVARINT:
case PB_LTYPE_SVARINT:
wiretype = PB_WT_VARINT;
break;
case PB_LTYPE_FIXED32:
wiretype = PB_WT_32BIT;
break;
case PB_LTYPE_FIXED64:
wiretype = PB_WT_64BIT;
break;
case PB_LTYPE_BYTES:
case PB_LTYPE_STRING:
case PB_LTYPE_SUBMESSAGE:
case PB_LTYPE_SUBMSG_W_CB:
case PB_LTYPE_FIXED_LENGTH_BYTES:
wiretype = PB_WT_STRING;
break;
default:
PB_RETURN_ERROR(stream, "invalid field type");
}
return pb_encode_tag(stream, wiretype, field->tag);
}
bool checkreturn pb_encode_string(pb_ostream_t *stream, const pb_byte_t *buffer, size_t size)
{
if (!pb_encode_varint(stream, (pb_uint64_t)size))
return false;
return pb_write(stream, buffer, size);
}
bool checkreturn pb_encode_submessage(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct)
{
/* First calculate the message size using a non-writing substream. */
pb_ostream_t substream = PB_OSTREAM_SIZING;
size_t size;
bool status;
if (!pb_encode(&substream, fields, src_struct))
{
#ifndef PB_NO_ERRMSG
stream->errmsg = substream.errmsg;
#endif
return false;
}
size = substream.bytes_written;
if (!pb_encode_varint(stream, (pb_uint64_t)size))
return false;
if (stream->callback == NULL)
return pb_write(stream, NULL, size); /* Just sizing */
if (stream->bytes_written + size > stream->max_size)
PB_RETURN_ERROR(stream, "stream full");
/* Use a substream to verify that a callback doesn't write more than
* what it did the first time. */
substream.callback = stream->callback;
substream.state = stream->state;
substream.max_size = size;
substream.bytes_written = 0;
#ifndef PB_NO_ERRMSG
substream.errmsg = NULL;
#endif
status = pb_encode(&substream, fields, src_struct);
stream->bytes_written += substream.bytes_written;
stream->state = substream.state;
#ifndef PB_NO_ERRMSG
stream->errmsg = substream.errmsg;
#endif
if (substream.bytes_written != size)
PB_RETURN_ERROR(stream, "submsg size changed");
return status;
}
/* Field encoders */
static bool checkreturn pb_enc_bool(pb_ostream_t *stream, const pb_field_iter_t *field)
{
uint32_t value = safe_read_bool(field->pData) ? 1 : 0;
PB_UNUSED(field);
return pb_encode_varint(stream, value);
}
static bool checkreturn pb_enc_varint(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (PB_LTYPE(field->type) == PB_LTYPE_UVARINT)
{
/* Perform unsigned integer extension */
pb_uint64_t value = 0;
if (field->data_size == sizeof(uint_least8_t))
value = *(const uint_least8_t*)field->pData;
else if (field->data_size == sizeof(uint_least16_t))
value = *(const uint_least16_t*)field->pData;
else if (field->data_size == sizeof(uint32_t))
value = *(const uint32_t*)field->pData;
else if (field->data_size == sizeof(pb_uint64_t))
value = *(const pb_uint64_t*)field->pData;
else
PB_RETURN_ERROR(stream, "invalid data_size");
return pb_encode_varint(stream, value);
}
else
{
/* Perform signed integer extension */
pb_int64_t value = 0;
if (field->data_size == sizeof(int_least8_t))
value = *(const int_least8_t*)field->pData;
else if (field->data_size == sizeof(int_least16_t))
value = *(const int_least16_t*)field->pData;
else if (field->data_size == sizeof(int32_t))
value = *(const int32_t*)field->pData;
else if (field->data_size == sizeof(pb_int64_t))
value = *(const pb_int64_t*)field->pData;
else
PB_RETURN_ERROR(stream, "invalid data_size");
if (PB_LTYPE(field->type) == PB_LTYPE_SVARINT)
return pb_encode_svarint(stream, value);
#ifdef PB_WITHOUT_64BIT
else if (value < 0)
return pb_encode_varint_32(stream, (uint32_t)value, (uint32_t)-1);
#endif
else
return pb_encode_varint(stream, (pb_uint64_t)value);
}
}
static bool checkreturn pb_enc_fixed(pb_ostream_t *stream, const pb_field_iter_t *field)
{
#ifdef PB_CONVERT_DOUBLE_FLOAT
if (field->data_size == sizeof(float) && PB_LTYPE(field->type) == PB_LTYPE_FIXED64)
{
return pb_encode_float_as_double(stream, *(float*)field->pData);
}
#endif
if (field->data_size == sizeof(uint32_t))
{
return pb_encode_fixed32(stream, field->pData);
}
#ifndef PB_WITHOUT_64BIT
else if (field->data_size == sizeof(uint64_t))
{
return pb_encode_fixed64(stream, field->pData);
}
#endif
else
{
PB_RETURN_ERROR(stream, "invalid data_size");
}
}
static bool checkreturn pb_enc_bytes(pb_ostream_t *stream, const pb_field_iter_t *field)
{
const pb_bytes_array_t *bytes = NULL;
bytes = (const pb_bytes_array_t*)field->pData;
if (bytes == NULL)
{
/* Treat null pointer as an empty bytes field */
return pb_encode_string(stream, NULL, 0);
}
if (PB_ATYPE(field->type) == PB_ATYPE_STATIC &&
bytes->size > field->data_size - offsetof(pb_bytes_array_t, bytes))
{
PB_RETURN_ERROR(stream, "bytes size exceeded");
}
return pb_encode_string(stream, bytes->bytes, (size_t)bytes->size);
}
static bool checkreturn pb_enc_string(pb_ostream_t *stream, const pb_field_iter_t *field)
{
size_t size = 0;
size_t max_size = (size_t)field->data_size;
const char *str = (const char*)field->pData;
if (PB_ATYPE(field->type) == PB_ATYPE_POINTER)
{
max_size = (size_t)-1;
}
else
{
/* pb_dec_string() assumes string fields end with a null
* terminator when the type isn't PB_ATYPE_POINTER, so we
* shouldn't allow more than max-1 bytes to be written to
* allow space for the null terminator.
*/
if (max_size == 0)
PB_RETURN_ERROR(stream, "zero-length string");
max_size -= 1;
}
if (str == NULL)
{
size = 0; /* Treat null pointer as an empty string */
}
else
{
const char *p = str;
/* strnlen() is not always available, so just use a loop */
while (size < max_size && *p != '\0')
{
size++;
p++;
}
if (*p != '\0')
{
PB_RETURN_ERROR(stream, "unterminated string");
}
}
#ifdef PB_VALIDATE_UTF8
if (!pb_validate_utf8(str))
PB_RETURN_ERROR(stream, "invalid utf8");
#endif
return pb_encode_string(stream, (const pb_byte_t*)str, size);
}
static bool checkreturn pb_enc_submessage(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (field->submsg_desc == NULL)
PB_RETURN_ERROR(stream, "invalid field descriptor");
if (PB_LTYPE(field->type) == PB_LTYPE_SUBMSG_W_CB && field->pSize != NULL)
{
/* Message callback is stored right before pSize. */
pb_callback_t *callback = (pb_callback_t*)field->pSize - 1;
if (callback->funcs.encode)
{
if (!callback->funcs.encode(stream, field, &callback->arg))
return false;
}
}
return pb_encode_submessage(stream, field->submsg_desc, field->pData);
}
static bool checkreturn pb_enc_fixed_length_bytes(pb_ostream_t *stream, const pb_field_iter_t *field)
{
return pb_encode_string(stream, (const pb_byte_t*)field->pData, (size_t)field->data_size);
}
#ifdef PB_CONVERT_DOUBLE_FLOAT
bool pb_encode_float_as_double(pb_ostream_t *stream, float value)
{
union { float f; uint32_t i; } in;
uint_least8_t sign;
int exponent;
uint64_t mantissa;
in.f = value;
/* Decompose input value */
sign = (uint_least8_t)((in.i >> 31) & 1);
exponent = (int)((in.i >> 23) & 0xFF) - 127;
mantissa = in.i & 0x7FFFFF;
if (exponent == 128)
{
/* Special value (NaN etc.) */
exponent = 1024;
}
else if (exponent == -127)
{
if (!mantissa)
{
/* Zero */
exponent = -1023;
}
else
{
/* Denormalized */
mantissa <<= 1;
while (!(mantissa & 0x800000))
{
mantissa <<= 1;
exponent--;
}
mantissa &= 0x7FFFFF;
}
}
/* Combine fields */
mantissa <<= 29;
mantissa |= (uint64_t)(exponent + 1023) << 52;
mantissa |= (uint64_t)sign << 63;
return pb_encode_fixed64(stream, &mantissa);
}
#endif

View File

@ -0,0 +1,185 @@
/* pb_encode.h: Functions to encode protocol buffers. Depends on pb_encode.c.
* The main function is pb_encode. You also need an output stream, and the
* field descriptions created by nanopb_generator.py.
*/
#ifndef PB_ENCODE_H_INCLUDED
#define PB_ENCODE_H_INCLUDED
#include "pb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Structure for defining custom output streams. You will need to provide
* a callback function to write the bytes to your storage, which can be
* for example a file or a network socket.
*
* The callback must conform to these rules:
*
* 1) Return false on IO errors. This will cause encoding to abort.
* 2) You can use state to store your own data (e.g. buffer pointer).
* 3) pb_write will update bytes_written after your callback runs.
* 4) Substreams will modify max_size and bytes_written. Don't use them
* to calculate any pointers.
*/
struct pb_ostream_s
{
#ifdef PB_BUFFER_ONLY
/* Callback pointer is not used in buffer-only configuration.
* Having an int pointer here allows binary compatibility but
* gives an error if someone tries to assign callback function.
* Also, NULL pointer marks a 'sizing stream' that does not
* write anything.
*/
int *callback;
#else
bool (*callback)(pb_ostream_t *stream, const pb_byte_t *buf, size_t count);
#endif
void *state; /* Free field for use by callback implementation. */
size_t max_size; /* Limit number of output bytes written (or use SIZE_MAX). */
size_t bytes_written; /* Number of bytes written so far. */
#ifndef PB_NO_ERRMSG
const char *errmsg;
#endif
};
/***************************
* Main encoding functions *
***************************/
/* Encode a single protocol buffers message from C structure into a stream.
* Returns true on success, false on any failure.
* The actual struct pointed to by src_struct must match the description in fields.
* All required fields in the struct are assumed to have been filled in.
*
* Example usage:
* MyMessage msg = {};
* uint8_t buffer[64];
* pb_ostream_t stream;
*
* msg.field1 = 42;
* stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
* pb_encode(&stream, MyMessage_fields, &msg);
*/
bool pb_encode(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct);
/* Extended version of pb_encode, with several options to control the
* encoding process:
*
* PB_ENCODE_DELIMITED: Prepend the length of message as a varint.
* Corresponds to writeDelimitedTo() in Google's
* protobuf API.
*
* PB_ENCODE_NULLTERMINATED: Append a null byte to the message for termination.
* NOTE: This behaviour is not supported in most other
* protobuf implementations, so PB_ENCODE_DELIMITED
* is a better option for compatibility.
*/
#define PB_ENCODE_DELIMITED 0x02U
#define PB_ENCODE_NULLTERMINATED 0x04U
bool pb_encode_ex(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct, unsigned int flags);
/* Defines for backwards compatibility with code written before nanopb-0.4.0 */
#define pb_encode_delimited(s,f,d) pb_encode_ex(s,f,d, PB_ENCODE_DELIMITED)
#define pb_encode_nullterminated(s,f,d) pb_encode_ex(s,f,d, PB_ENCODE_NULLTERMINATED)
/* Encode the message to get the size of the encoded data, but do not store
* the data. */
bool pb_get_encoded_size(size_t *size, const pb_msgdesc_t *fields, const void *src_struct);
/**************************************
* Functions for manipulating streams *
**************************************/
/* Create an output stream for writing into a memory buffer.
* The number of bytes written can be found in stream.bytes_written after
* encoding the message.
*
* Alternatively, you can use a custom stream that writes directly to e.g.
* a file or a network socket.
*/
pb_ostream_t pb_ostream_from_buffer(pb_byte_t *buf, size_t bufsize);
/* Pseudo-stream for measuring the size of a message without actually storing
* the encoded data.
*
* Example usage:
* MyMessage msg = {};
* pb_ostream_t stream = PB_OSTREAM_SIZING;
* pb_encode(&stream, MyMessage_fields, &msg);
* printf("Message size is %d\n", stream.bytes_written);
*/
#ifndef PB_NO_ERRMSG
#define PB_OSTREAM_SIZING {0,0,0,0,0}
#else
#define PB_OSTREAM_SIZING {0,0,0,0}
#endif
/* Function to write into a pb_ostream_t stream. You can use this if you need
* to append or prepend some custom headers to the message.
*/
bool pb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count);
/************************************************
* Helper functions for writing field callbacks *
************************************************/
/* Encode field header based on type and field number defined in the field
* structure. Call this from the callback before writing out field contents. */
bool pb_encode_tag_for_field(pb_ostream_t *stream, const pb_field_iter_t *field);
/* Encode field header by manually specifing wire type. You need to use this
* if you want to write out packed arrays from a callback field. */
bool pb_encode_tag(pb_ostream_t *stream, pb_wire_type_t wiretype, uint32_t field_number);
/* Encode an integer in the varint format.
* This works for bool, enum, int32, int64, uint32 and uint64 field types. */
#ifndef PB_WITHOUT_64BIT
bool pb_encode_varint(pb_ostream_t *stream, uint64_t value);
#else
bool pb_encode_varint(pb_ostream_t *stream, uint32_t value);
#endif
/* Encode an integer in the zig-zagged svarint format.
* This works for sint32 and sint64. */
#ifndef PB_WITHOUT_64BIT
bool pb_encode_svarint(pb_ostream_t *stream, int64_t value);
#else
bool pb_encode_svarint(pb_ostream_t *stream, int32_t value);
#endif
/* Encode a string or bytes type field. For strings, pass strlen(s) as size. */
bool pb_encode_string(pb_ostream_t *stream, const pb_byte_t *buffer, size_t size);
/* Encode a fixed32, sfixed32 or float value.
* You need to pass a pointer to a 4-byte wide C variable. */
bool pb_encode_fixed32(pb_ostream_t *stream, const void *value);
#ifndef PB_WITHOUT_64BIT
/* Encode a fixed64, sfixed64 or double value.
* You need to pass a pointer to a 8-byte wide C variable. */
bool pb_encode_fixed64(pb_ostream_t *stream, const void *value);
#endif
#ifdef PB_CONVERT_DOUBLE_FLOAT
/* Encode a float value so that it appears like a double in the encoded
* message. */
bool pb_encode_float_as_double(pb_ostream_t *stream, float value);
#endif
/* Encode a submessage field.
* You need to pass the pb_field_t array and pointer to struct, just like
* with pb_encode(). This internally encodes the submessage twice, first to
* calculate message size and then to actually write it out.
*/
bool pb_encode_submessage(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif