cleaup+comments

This commit is contained in:
Lurkars 2020-12-30 19:31:10 +01:00
parent fc3b8e329f
commit a811163650

View File

@ -13,7 +13,7 @@
#include <APA102.h>
#endif
// CONFIGURE please configure next lines depending on your stripe arragmentment
// CONFIGURE please configure next lines depending on your stripes arragmentment
#define HALL_PIN 2 // digital pin of hall sensor
#define ROUND_COUNT 1 // how many rounds to take time (minimum 1)
@ -25,7 +25,6 @@ int strip_matrix_offset[LED_STRIPES] = {0, 0, (NUM_SEGMENTS / 2), (NUM_SEGMENTS
bool strip_matrix_invert[LED_STRIPES] = {false, true, false, true}; // set LEDs in revert order for stripe
// \CONFIGURE
// LED stripes
#ifdef NEOPIXEL
#define LED_PIN 6 // data pin for neopixel LED stripe
@ -36,7 +35,7 @@ Adafruit_NeoPixel ledStrip(LED_COUNT *LED_STRIPES, LED_PIN, NEO_GRB + NEO_KHZ800
#define LED_CLOCK_PIN 11 // clock pin for LED strip
APA102<LED_DATA_PIN, LED_CLOCK_PIN> ledStrip;
#define BRIGHTNESS 1 // brightness for LED strip [0-31]
rgb_color color_buffer[LED_COUNT * LED_STRIPES]; // color buffer to write to LED stripe
rgb_color color_buffer[LED_COUNT * LED_STRIPES]; // color buffer to write to LED stripe
#endif
float passed = 0;
@ -45,15 +44,15 @@ int current_image_index = 0;
uint8_t *current_palette;
uint8_t *current_pixels;
int current_state = 0;
int current_segment = 0;
void setup()
{
Serial.begin(115200);
pinMode(HALL_PIN, INPUT);
pinMode(LED_BUILTIN, INPUT);
current_palette = (uint8_t *)pgm_read_word(&images[current_image_index].palette);
current_pixels = (uint8_t *)pgm_read_word(&images[current_image_index].pixels);
Serial.begin(115200); // debug serial print
pinMode(HALL_PIN, INPUT); // set hall pin as input
pinMode(LED_BUILTIN, OUTPUT); // set build-in LED as output
current_palette = (uint8_t *)pgm_read_word(&images[current_image_index].palette); // init palette for current image
current_pixels = (uint8_t *)pgm_read_word(&images[current_image_index].pixels); // init pixels for current image
#ifdef NEOPIXEL
ledStrip.begin();
ledStrip.show();
@ -65,52 +64,54 @@ void loop()
{
float start = micros();
int count = 0;
bool change = false;
while (count <= ROUND_COUNT)
bool detected = false;
while (count <= ROUND_COUNT) // keep in loop while not ROUND_COUNT reached
{
if (digitalRead(HALL_PIN) == LOW)
if (digitalRead(HALL_PIN) == LOW) // if hall sensor detect magnet
{
digitalWrite(LED_BUILTIN, HIGH);
if (!change)
digitalWrite(LED_BUILTIN, HIGH); // use build-in LED as indicator for present magnet
if (!detected) // check if magnet present first time
{
change = true;
count++;
detected = true;
count++; // count round
}
}
else
else // if hall sensor not detect magnet
{
digitalWrite(LED_BUILTIN, LOW);
change = false;
digitalWrite(LED_BUILTIN, LOW); // build-in LED indicator
detected = false; // reset magnet state
}
float current_diff = micros() - start;
float current_diff = micros() - start; // get time passed in current loop
#ifndef TEST_STRIPES
current_state = ((float)passed / current_diff * NUM_SEGMENTS);
#else
int state = (micros() / 500000) % NUM_SEGMENTS;
if (state == current_state)
#ifdef TEST_STRIPES // testing stripes
int segment = (micros() / 500000) % NUM_SEGMENTS; // calculate current segment as half seconds passed since runtime
if (segment == current_segment) // do nothing if still in old segment
{
return;
}
Serial.println(current_state);
current_state = state;
Serial.println(current_segment); // debug print of current segment
current_segment = segment;
#else
current_segment = ((float)passed / current_diff * NUM_SEGMENTS); // calculate current segment as percentage of time passed
#endif
for (int strip = 0; strip < LED_STRIPES; strip++)
for (int strip = 0; strip < LED_STRIPES; strip++) // loop over all stripes
{
uint8_t pixel_color_index;
uint8_t *current_pixel = (uint8_t *)&current_pixels[((current_state + strip_matrix_offset[strip]) % NUM_SEGMENTS) * LED_COUNT];
for (int i = 0; i < LED_COUNT; i++)
// get pointer to current pixel of image as offset of current strip and offset of current segment
uint8_t *current_pixel = (uint8_t *)&current_pixels[((current_segment + strip_matrix_offset[strip]) % NUM_SEGMENTS) * LED_COUNT];
for (int i = 0; i < LED_COUNT; i++) // loop over all LEDs of current strip
{
pixel_color_index = pgm_read_byte(current_pixel++) * 3;
uint8_t pixel_index = strip * LED_COUNT + (strip_matrix_invert[strip] ? (LED_COUNT - i) : i);
pixel_color_index = pgm_read_byte(current_pixel++) * 3; // read color palette index for current pixel
uint8_t pixel_index = strip * LED_COUNT + (strip_matrix_invert[strip] ? (LED_COUNT - i) : i); // calculate index of LED with offset and inversion
#ifdef NEOPIXEL
#define LED_PIN 6
// set pixel of NEOPIXEL
ledStrip.setPixelColor(pixel_index, pgm_read_byte(&current_palette[pixel_color_index]),
pgm_read_byte(&current_palette[pixel_color_index + 1]),
pgm_read_byte(&current_palette[pixel_color_index + 2]));
#else
// set pixel of buffer
color_buffer[pixel_index] = rgb_color(
pgm_read_byte(&current_palette[pixel_color_index]),
pgm_read_byte(&current_palette[pixel_color_index + 1]),
@ -119,11 +120,13 @@ void loop()
}
}
#ifdef NEOPIXEL
// update pixel
ledStrip.show();
#else
// write buffer to stripes
ledStrip.write(color_buffer, LED_COUNT * LED_STRIPES, BRIGHTNESS);
#endif
}
passed = (micros() - start);
passed = (micros() - start); // rounds done, caluclate duration
}