added Exposure code, DS3231, SSD1306, interfaces, started with protocol buffers impl.

This commit is contained in:
Lurkars 2020-07-22 21:44:17 +02:00
parent 04f7e8e1d6
commit 4ba1352a05
38 changed files with 5800 additions and 178 deletions

View File

@ -1,28 +1,29 @@
*worked on this a few days offtime, now here is the first working source*
# esp-ena # esp-ena
Implementation of the Covid-19 Exposure Notification API by Apple and Google on an ESP32 (with ESP-IDF). Implementation of contact tracing with the Covid-19 Exposure Notification API by Apple and Google on an ESP32 (with [ESP-IDF](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html)).
More information about the Covid-19 Exposure Notification at [Apple](https://www.apple.com/covid19/contacttracing/) and [Google](https://www.google.com/covid19/exposurenotifications/). This is meant for people without smartphone or without smartphones with Apples/Googles implementation. More information about the Covid-19 Exposure Notification at [Apple](https://www.apple.com/covid19/contacttracing/) and [Google](https://www.google.com/covid19/exposurenotifications/). This is meant for people without smartphone or without smartphones with Apples/Googles implementation.
[Demo Video](https://twitter.com/Lurkars/status/1282223547579019264) [Demo Video](https://twitter.com/Lurkars/status/1282223547579019264)
This implementation covers for now the BLE part including the cryptography specifications needed (see Bluetooth Specifications and Cryptography Specifications documents in the links above): This implementation fully covers for the BLE part including the cryptography specifications needed (see Bluetooth Specifications and Cryptography Specifications documents in the links above):
* send beacons * send beacons
* store TEKs on flash (last 14) * store TEKs on flash (last 14)
* receive beacons * receive beacons
* received beacons are stored after 5 minutes threshold (storage is limited, ~100k beacons can be stored) * received beacons are stored after 5 minutes threshold (storage is limited, ~100k beacons can be stored)
Features missing for now are: Additional features for full ENA device
* compare received beacons with infected list * calculating risks scores (after adding reported keys and storing exposure information)
* calculating risks scores * RTC support with DS3231
* display support with SSD1306
Extensions planned:
* add RTC (will test DS3231)
* add display (added SSD1306)
* interface to * interface to
* set time * set time
* delete beacons
Features missing for now are:
* retrieve infected list and parse from binary (started with binary parsing)
Extensions planned:
* interface to
* delete data
* show status * show status
* report infection? * report infection?
* receive infected beacons list (will test [Corona Warn App](https://github.com/corona-warn-app)) * receive infected beacons list (will test [Corona Warn App](https://github.com/corona-warn-app))
@ -44,9 +45,7 @@ The following acronyms will be used in code and comments:
* *AEM* Associated Encrypted Metadata - send and received metadata * *AEM* Associated Encrypted Metadata - send and received metadata
Open questions Open questions
* now save ENIN for stored beacons (documentation says timestamp), but for infection status ENIN should be enough!?
* service UUID is send reversed, must RPI and AEM also beeing send in reverse? Don't know BLE specification enough * service UUID is send reversed, must RPI and AEM also beeing send in reverse? Don't know BLE specification enough
* fixed change of advertise payload every 10 minutes, random value between ~15 minutes better?
## How to use ## How to use

View File

@ -0,0 +1,7 @@
idf_component_register(
SRCS
"ds3231.c"
INCLUDE_DIRS "include"
PRIV_REQUIRES
i2c-main
)

119
components/ds3231/ds3231.c Normal file
View File

@ -0,0 +1,119 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <time.h>
#include "driver/i2c.h"
#include "esp_log.h"
#include "i2c-main.h"
#include "ds3231.h"
uint8_t ds3231_dec2bcd(uint8_t value)
{
return ((value / 10 * 16) + (value % 10));
}
uint8_t ds3231_bcd2dec(uint8_t value)
{
return ((value / 16 * 10) + (value % 16));
}
void ds3231_get_time(struct tm *time)
{
if (!i2c_is_initialized())
{
i2c_main_init();
}
uint8_t data[7];
i2c_cmd_handle_t cmd;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (DS3231_ADDRESS << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, DS3231_TIME, true);
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (DS3231_ADDRESS << 1) | I2C_MASTER_READ, true);
i2c_master_read(cmd, data, 7, I2C_MASTER_LAST_NACK);
i2c_master_stop(cmd);
ESP_ERROR_CHECK_WITHOUT_ABORT(i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd);
time->tm_sec = ds3231_bcd2dec(data[0]);
time->tm_min = ds3231_bcd2dec(data[1]);
if (data[2] & DS3231_12_HOUR_FLAG)
{
time->tm_hour = ds3231_bcd2dec(data[2] & DS3231_12_HOUR_MASK) - 1;
if (data[2] & DS3231_PM_HOUR_FLAG)
{
time->tm_hour += 12;
}
}
else
{
time->tm_hour = ds3231_bcd2dec(data[2]);
}
time->tm_wday = ds3231_bcd2dec(data[3]) - 1;
time->tm_mday = ds3231_bcd2dec(data[4]);
time->tm_mon = ds3231_bcd2dec(data[5] & DS3231_MONTH_MASK) - 1;
uint8_t century = (data[5] & DS3231_CENTURY_FLAG) >> 7;
if (century)
{
time->tm_year = ds3231_bcd2dec(data[6]) + 100;
}
else
{
time->tm_year = ds3231_bcd2dec(data[6]);
}
time->tm_isdst = 0;
}
void ds3231_set_time(struct tm *time)
{
if (!i2c_is_initialized())
{
i2c_main_init();
}
uint8_t data[7] = {0};
data[0] = ds3231_dec2bcd(time->tm_sec);
data[1] = ds3231_dec2bcd(time->tm_min);
data[2] = ds3231_dec2bcd(time->tm_hour); // write 24h format
data[3] = ds3231_dec2bcd(time->tm_wday + 1);
data[4] = ds3231_dec2bcd(time->tm_mday);
uint8_t century = 0;
if (time->tm_year > 100)
{
century = DS3231_CENTURY_FLAG;
data[6] = ds3231_dec2bcd(time->tm_year - 100);
}
else
{
data[6] = ds3231_dec2bcd(time->tm_year);
}
data[5] = ds3231_dec2bcd(time->tm_mon + 1) + century;
i2c_cmd_handle_t cmd;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (DS3231_ADDRESS << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, DS3231_TIME, true);
i2c_master_write(cmd, data, 7, true);
i2c_master_stop(cmd);
ESP_ERROR_CHECK_WITHOUT_ABORT(i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd);
}

View File

@ -0,0 +1,78 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ds3231_H_
#define _ds3231_H_
#include <time.h>
// I2C address
#define DS3231_ADDRESS 0x68
// I2C registers
#define DS3231_TIME 0x00
#define DS3231_SECONDS 0x00
#define DS3231_MINUTES 0x01
#define DS3231_HOURS 0x02
#define DS3231_DAY 0x03
#define DS3231_DATE 0x04
#define DS3231_MONTH 0x05
#define DS3231_YEAR 0x06
#define DS3231_ALARM1_SECONDS 0x07
#define DS3231_ALARM1_MINUTES 0x08
#define DS3231_ALARM1_HOURS 0x09
#define DS3231_ALARM1_DATE 0x0A
#define DS3231_ALARM2_MINUTES 0x0B
#define DS3231_ALARM2_HOURS 0x0C
#define DS3231_ALARM2_DATE 0x0D
#define DS3231_CONTROL 0x0E
#define DS3231_STATUS 0x0F
#define DS3231_AGING_OFFSET 0x10
#define DS3231_MSB_TEMP 0x11
#define DS3231_LSB_TEMP 0x12
// control registers
#define DS3231_CONTROL_A1IE 0x01
#define DS3231_CONTROL_A2IE 0x02
#define DS3231_CONTROL_INTCN 0x04
#define DS3231_CONTROL_RS1 0x08
#define DS3231_CONTROL_RS2 0x10
#define DS3231_CONTROL_CONV 0x20
#define DS3231_CONTROL_BBSQW 0x40
#define DS3231_CONTROL_EOSC 0x80
// status registers
#define DS3231_STATUSL_A1F 0x01
#define DS3231_STATUSL_A2F 0x02
#define DS3231_STATUSL_BSY 0x04
#define DS3231_STATUSL_EN32KHZ 0x08
#define DS3231_STATUSL_OSF 0x80
// flags
#define DS3231_CENTURY_FLAG 0x80
#define DS3231_12_HOUR_FLAG 0x40
#define DS3231_PM_HOUR_FLAG 0x20
#define DS3231_12_HOUR_MASK 0x1F
#define DS3231_MONTH_MASK 0x1F
/**
* @brief Read time from DS3231
*/
void ds3231_get_time(struct tm *time);
/**
* @brief Write time to DS3231
*/
void ds3231_set_time(struct tm *time);
#endif

View File

@ -3,6 +3,7 @@ idf_component_register(
"ena-interface.c" "ena-interface.c"
"ena-interface-datetime.c" "ena-interface-datetime.c"
"ena-interface-menu.c" "ena-interface-menu.c"
"ena-interface-status.c"
INCLUDE_DIRS "include" INCLUDE_DIRS "include"
PRIV_REQUIRES PRIV_REQUIRES
ena ena

View File

@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <stdio.h> #include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include "esp_log.h" #include "esp_log.h"
#include "ena-interface.h" #include "ena-interface.h"
@ -22,15 +24,51 @@
static int interface_datetime_state = ENA_INTERFACE_DATETIME_STATE_YEAR; static int interface_datetime_state = ENA_INTERFACE_DATETIME_STATE_YEAR;
const uint32_t interface_datetime_steps[6] = {
31557600, 2629800, 86400, 3600, 60, 1};
void ena_interface_datetime_esc(void) void ena_interface_datetime_esc(void)
{ {
ena_interface_menu_start(); ena_interface_menu_start();
} }
void ena_interface_datetime_ok(void)
{
interface_datetime_state++;
if (interface_datetime_state > ENA_INTERFACE_DATETIME_STATE_SECONDS)
{
interface_datetime_state = ENA_INTERFACE_DATETIME_STATE_YEAR;
}
ESP_LOGD(ENA_INTERFACE_LOG, "datetime to %d", interface_datetime_state);
}
void ena_interface_datetime_up(void)
{
time_t curtime = time(NULL);
curtime += interface_datetime_steps[interface_datetime_state];
struct timeval tv = {0};
tv.tv_sec = curtime;
settimeofday(&tv, NULL);
ESP_LOGD(ENA_INTERFACE_LOG, "increment %d about %u %s", interface_datetime_state, interface_datetime_steps[interface_datetime_state], ctime(&curtime));
}
void ena_interface_datetime_down(void)
{
time_t curtime = time(NULL);
curtime -= interface_datetime_steps[interface_datetime_state];
struct timeval tv = {0};
tv.tv_sec = curtime;
settimeofday(&tv, NULL);
ESP_LOGD(ENA_INTERFACE_LOG, "decrement %d about %u %s", interface_datetime_state, interface_datetime_steps[interface_datetime_state], ctime(&curtime));
}
void ena_interface_datetime_start(void) void ena_interface_datetime_start(void)
{ {
ena_interface_set_state(ENA_INTERFACE_STATE_SET_YEAR); ena_interface_set_state(ENA_INTERFACE_STATE_SET_DATETIME);
ena_interface_register_touch_callback(TOUCH_PAD_ESC, &ena_interface_datetime_esc); ena_interface_register_touch_callback(TOUCH_PAD_ESC, &ena_interface_datetime_esc);
ena_interface_register_touch_callback(TOUCH_PAD_OK, &ena_interface_datetime_ok);
ena_interface_register_touch_callback(TOUCH_PAD_UP, &ena_interface_datetime_up);
ena_interface_register_touch_callback(TOUCH_PAD_DOWN, &ena_interface_datetime_down);
ESP_LOGD(ENA_INTERFACE_LOG, "start datetime interface"); ESP_LOGD(ENA_INTERFACE_LOG, "start datetime interface");
} }

View File

@ -17,6 +17,7 @@
#include "driver/touch_pad.h" #include "driver/touch_pad.h"
#include "ena-interface.h" #include "ena-interface.h"
#include "ena-interface-datetime.h" #include "ena-interface-datetime.h"
#include "ena-interface-status.h"
#include "ena-interface-menu.h" #include "ena-interface-menu.h"
@ -24,17 +25,35 @@ static int interface_menu_state = ENA_INTERFACE_MENU_STATE_IDLE;
void ena_interface_menu_ok(void) void ena_interface_menu_ok(void)
{ {
if (interface_menu_state == ENA_INTERFACE_MENU_STATE_SELECT_TIME) { if (interface_menu_state == ENA_INTERFACE_MENU_STATE_SELECT_TIME)
{
ena_interface_datetime_start(); ena_interface_datetime_start();
} }
else if (interface_menu_state == ENA_INTERFACE_MENU_STATE_SELECT_STATUS)
{
ena_interface_status_start();
}
else if (interface_menu_state == ENA_INTERFACE_MENU_STATE_IDLE)
{
if (ena_interface_get_state() == ENA_INTERFACE_STATE_MENU)
{
ena_interface_set_state(ENA_INTERFACE_STATE_IDLE);
ena_interface_register_touch_callback(TOUCH_PAD_UP, NULL);
ena_interface_register_touch_callback(TOUCH_PAD_DOWN, NULL);
}
else
{
ena_interface_menu_start();
}
}
} }
void ena_interface_menu_up(void) void ena_interface_menu_up(void)
{ {
interface_menu_state--; interface_menu_state--;
if (interface_menu_state < 0) if (interface_menu_state < ENA_INTERFACE_MENU_STATE_IDLE)
{ {
interface_menu_state = sizeof(interface_menu_state) - 1; interface_menu_state = ENA_INTERFACE_MENU_STATE_SELECT_STATUS;
} }
ESP_LOGD(ENA_INTERFACE_LOG, "menu up to %d", interface_menu_state); ESP_LOGD(ENA_INTERFACE_LOG, "menu up to %d", interface_menu_state);
} }
@ -42,9 +61,9 @@ void ena_interface_menu_up(void)
void ena_interface_menu_down(void) void ena_interface_menu_down(void)
{ {
interface_menu_state++; interface_menu_state++;
if (interface_menu_state == sizeof(interface_menu_state)) if (interface_menu_state > ENA_INTERFACE_MENU_STATE_SELECT_STATUS)
{ {
interface_menu_state = 0; interface_menu_state = ENA_INTERFACE_MENU_STATE_IDLE;
} }
ESP_LOGD(ENA_INTERFACE_LOG, "menu down to %d", interface_menu_state); ESP_LOGD(ENA_INTERFACE_LOG, "menu down to %d", interface_menu_state);
} }

View File

@ -0,0 +1,37 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "esp_log.h"
#include "driver/touch_pad.h"
#include "ena-interface.h"
#include "ena-interface-menu.h"
#include "ena-interface-status.h"
void ena_interface_status_esc(void)
{
ena_interface_menu_start();
}
void ena_interface_status_start(void)
{
ena_interface_set_state(ENA_INTERFACE_STATE_STATUS);
ena_interface_register_touch_callback(TOUCH_PAD_ESC, &ena_interface_status_esc);
ena_interface_register_touch_callback(TOUCH_PAD_OK, NULL);
ena_interface_register_touch_callback(TOUCH_PAD_UP, NULL);
ena_interface_register_touch_callback(TOUCH_PAD_DOWN, NULL);
ESP_LOGD(ENA_INTERFACE_LOG, "start status interface");
}

View File

@ -33,24 +33,23 @@ void ena_interface_register_touch_callback(int touch_pad, ena_interface_touch_ca
void ena_interface_run(void *pvParameter) void ena_interface_run(void *pvParameter)
{ {
uint16_t touch_value; static uint16_t touch_value;
uint16_t touch_thresh; static uint16_t touch_thresh;
bool touch_status_current[4] = {0}; static bool touch_status_current[TOUCH_PAD_MAX] = {0};
while (1) while (1)
{ {
for (int i = 0; i < TOUCH_PAD_COUNT; i++) for (int i = 0; i < TOUCH_PAD_COUNT; i++)
{ {
int touch_id = touch_mapping[i]; ESP_ERROR_CHECK_WITHOUT_ABORT(touch_pad_read_filtered(touch_mapping[i], &touch_value));
ESP_ERROR_CHECK_WITHOUT_ABORT(touch_pad_read_filtered(touch_id, &touch_value)); ESP_ERROR_CHECK_WITHOUT_ABORT(touch_pad_get_thresh(touch_mapping[i], &touch_thresh));
ESP_ERROR_CHECK_WITHOUT_ABORT(touch_pad_get_thresh(touch_id, &touch_thresh));
touch_status_current[i] = touch_value < touch_thresh; touch_status_current[i] = touch_value < touch_thresh;
if (!touch_status[i] & touch_status_current[i]) if (!touch_status[i] & touch_status_current[i])
{ {
ESP_LOGD(ENA_INTERFACE_LOG, "touch %u at %d (thresh %u)", touch_value, touch_id, touch_thresh); ESP_LOGD(ENA_INTERFACE_LOG, "touch %u at %d (thresh %u)", touch_value, touch_mapping[i], touch_thresh);
if (touch_callbacks[touch_id] != NULL) if (touch_callbacks[touch_mapping[i]] != NULL)
{ {
(*touch_callbacks[touch_id])(); (*touch_callbacks[touch_mapping[i]])();
} }
} }
touch_status[i] = touch_status_current[i]; touch_status[i] = touch_status_current[i];
@ -73,22 +72,19 @@ void ena_interface_start(void)
for (int i = 0; i < TOUCH_PAD_COUNT; i++) for (int i = 0; i < TOUCH_PAD_COUNT; i++)
{ {
int touch_id = touch_mapping[i]; ESP_ERROR_CHECK(touch_pad_config(touch_mapping[i], 0));
ESP_ERROR_CHECK(touch_pad_config(touch_id, 0));
} }
ESP_ERROR_CHECK(touch_pad_filter_start(TOUCHPAD_FILTER_TOUCH_PERIOD)); ESP_ERROR_CHECK(touch_pad_filter_start(TOUCHPAD_FILTER_TOUCH_PERIOD));
uint16_t touch_value; uint16_t touch_value;
for (int i = 0; i < TOUCH_PAD_COUNT; i++) for (int i = 0; i < TOUCH_PAD_COUNT; i++)
{ {
int touch_id = touch_mapping[i]; ESP_ERROR_CHECK(touch_pad_read_filtered(touch_mapping[i], &touch_value));
ESP_ERROR_CHECK(touch_pad_read_filtered(touch_id, &touch_value)); ESP_ERROR_CHECK(touch_pad_set_thresh(touch_mapping[i], touch_value * 2 / 3));
ESP_ERROR_CHECK(touch_pad_set_thresh(touch_id, touch_value * 2 / 3)); ESP_LOGD(ENA_INTERFACE_LOG, "calibrate %u at %u (thresh %u)", touch_mapping[i], touch_value, (touch_value * 2 / 3));
ESP_LOGD(ENA_INTERFACE_LOG, "calibrate %u at %u (thresh %u)", touch_id, touch_value, (touch_value * 2 / 3));
} }
xTaskCreate(&ena_interface_run, "ena_interface_run", configMINIMAL_STACK_SIZE * 4, NULL, 5, NULL); xTaskCreate(&ena_interface_run, "ena_interface_run", 4096, NULL, 5, NULL);
} }
int ena_interface_get_state(void) int ena_interface_get_state(void)

View File

@ -18,7 +18,7 @@ typedef enum
{ {
ENA_INTERFACE_MENU_STATE_IDLE = 0, ENA_INTERFACE_MENU_STATE_IDLE = 0,
ENA_INTERFACE_MENU_STATE_SELECT_TIME, ENA_INTERFACE_MENU_STATE_SELECT_TIME,
ENA_INTERFACE_MENU_STATE_SELECT_INFO, ENA_INTERFACE_MENU_STATE_SELECT_STATUS,
} ena_interface_menu_state; } ena_interface_menu_state;
void ena_interface_menu_start(void); void ena_interface_menu_start(void);

View File

@ -0,0 +1,19 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ena_INTERFACE_STATUS_H_
#define _ena_INTERFACE_STATUS_H_
void ena_interface_status_start(void);
#endif

View File

@ -28,15 +28,10 @@
*/ */
typedef enum typedef enum
{ {
ENA_INTERFACE_STATE_IDLE = 0, // ilde state, do nothing ENA_INTERFACE_STATE_IDLE = 0, // ilde state, do nothing
ENA_INTERFACE_STATE_MENU, // main menu ENA_INTERFACE_STATE_MENU, // main menu
ENA_INTERFACE_STATE_SET_YEAR, // set current year ENA_INTERFACE_STATE_SET_DATETIME, // set current date and time
ENA_INTERFACE_STATE_SET_MONTH, // set current month ENA_INTERFACE_STATE_STATUS, // current status
ENA_INTERFACE_STATE_SET_DAY, // set current day
ENA_INTERFACE_STATE_SET_HOUR, // set current hour
ENA_INTERFACE_STATE_SET_MINUTE, // set current minute
ENA_INTERFACE_STATE_SET_SECONDS, // set current second
ENA_INTERFACE_STATE_STATUS, // view current status
} ena_interface_state; } ena_interface_state;
/** /**

View File

@ -5,10 +5,15 @@ idf_component_register(
"ena-bluetooth-advertise.c" "ena-bluetooth-advertise.c"
"ena-bluetooth-scan.c" "ena-bluetooth-scan.c"
"ena-crypto.c" "ena-crypto.c"
"ena-exposure.c"
"ena-storage.c" "ena-storage.c"
INCLUDE_DIRS "include" INCLUDE_DIRS "include"
PRIV_REQUIRES PRIV_REQUIRES
spi_flash spi_flash
mbedtls mbedtls
bt bt
nanopb
EMBED_FILES
"test/export.bin"
"test/export.sig"
) )

View File

@ -14,6 +14,12 @@ menu "Exposure Notification API"
help help
Defines the maximum number of TEKs to be stored. (Default 14 [14 * 144 => 14 days]) Defines the maximum number of TEKs to be stored. (Default 14 [14 * 144 => 14 days])
config ENA_STORAGE_EXPOSURE_INFORMATION_MAX
int "Max. exporure information"
default 500
help
Defines the maximum number of exposure information to be stored. (Default 500)
config ENA_STORAGE_TEMP_BEACONS_MAX config ENA_STORAGE_TEMP_BEACONS_MAX
int "Max. temporary beacons" int "Max. temporary beacons"
default 1000 default 1000
@ -81,5 +87,12 @@ menu "Exposure Notification API"
Defines the TEK rolling period in 10 minute steps. (Default 144 => 24 hours) Defines the TEK rolling period in 10 minute steps. (Default 144 => 24 hours)
endmenu endmenu
menu "Miscellaneous"
config ENA_RAM
int "ENA RAM"
default 100000
help
RAM required for main task. (Default 100 KB)
endmenu
endmenu endmenu

View File

@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <string.h> #include <string.h>
#include <time.h>
#include "esp_log.h" #include "esp_log.h"
@ -21,17 +22,7 @@
#include "ena-beacons.h" #include "ena-beacons.h"
static uint32_t temp_beacons_count = 0; static uint32_t temp_beacons_count = 0;
static ena_temp_beacon_t temp_beacons[ENA_STORAGE_TEMP_BEACONS_MAX]; static ena_beacon_t temp_beacons[ENA_STORAGE_TEMP_BEACONS_MAX];
ena_beacon_t ena_beacons_convert(ena_temp_beacon_t temp_beacon)
{
ena_beacon_t beacon;
memcpy(beacon.rpi, temp_beacon.rpi, ENA_KEY_LENGTH);
memcpy(beacon.aem, temp_beacon.aem, ENA_AEM_METADATA_LENGTH);
beacon.timestamp = temp_beacon.timestamp_last;
beacon.rssi = temp_beacon.rssi;
return beacon;
}
int ena_get_temp_beacon_index(uint8_t *rpi, uint8_t *aem) int ena_get_temp_beacon_index(uint8_t *rpi, uint8_t *aem)
{ {
@ -55,8 +46,7 @@ void ena_beacons_temp_refresh(uint32_t unix_timestamp)
{ {
ESP_LOGD(ENA_BEACON_LOG, "create beacon after treshold"); ESP_LOGD(ENA_BEACON_LOG, "create beacon after treshold");
ESP_LOG_BUFFER_HEXDUMP(ENA_BEACON_LOG, temp_beacons[i].rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_BEACON_LOG, temp_beacons[i].rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ena_beacon_t beacon = ena_beacons_convert(temp_beacons[i]); ena_storage_add_beacon(&temp_beacons[i]);
ena_storage_add_beacon(&beacon);
ena_storage_remove_temp_beacon(i); ena_storage_remove_temp_beacon(i);
} }
else else
@ -77,7 +67,8 @@ void ena_beacons_temp_refresh(uint32_t unix_timestamp)
#if (CONFIG_ENA_STORAGE_DUMP) #if (CONFIG_ENA_STORAGE_DUMP)
// DEBUG dump // DEBUG dump
ena_storage_dump_tek(); ena_storage_dump_teks();
ena_storage_dump_exposure_information();
ena_storage_dump_temp_beacons(); ena_storage_dump_temp_beacons();
ena_storage_dump_beacons(); ena_storage_dump_beacons();
#endif #endif
@ -86,7 +77,6 @@ void ena_beacons_temp_refresh(uint32_t unix_timestamp)
void ena_beacon(uint32_t unix_timestamp, uint8_t *rpi, uint8_t *aem, int rssi) void ena_beacon(uint32_t unix_timestamp, uint8_t *rpi, uint8_t *aem, int rssi)
{ {
uint32_t beacon_index = ena_get_temp_beacon_index(rpi, aem); uint32_t beacon_index = ena_get_temp_beacon_index(rpi, aem);
if (beacon_index == -1) if (beacon_index == -1)
{ {
temp_beacons[temp_beacons_count].timestamp_first = unix_timestamp; temp_beacons[temp_beacons_count].timestamp_first = unix_timestamp;
@ -95,8 +85,7 @@ void ena_beacon(uint32_t unix_timestamp, uint8_t *rpi, uint8_t *aem, int rssi)
temp_beacons[temp_beacons_count].rssi = rssi; temp_beacons[temp_beacons_count].rssi = rssi;
temp_beacons[temp_beacons_count].timestamp_last = unix_timestamp; temp_beacons[temp_beacons_count].timestamp_last = unix_timestamp;
beacon_index = ena_storage_add_temp_beacon(&temp_beacons[temp_beacons_count]); beacon_index = ena_storage_add_temp_beacon(&temp_beacons[temp_beacons_count]);
ESP_LOGD(ENA_BEACON_LOG, "new temporary beacon %d at %u", temp_beacons_count, unix_timestamp);
ESP_LOGD(ENA_BEACON_LOG, "New temporary beacon at %d with timestamp %u", temp_beacons_count, unix_timestamp);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_BEACON_LOG, "RSSI %d", rssi); ESP_LOGD(ENA_BEACON_LOG, "RSSI %d", rssi);
@ -111,9 +100,10 @@ void ena_beacon(uint32_t unix_timestamp, uint8_t *rpi, uint8_t *aem, int rssi)
{ {
temp_beacons[beacon_index].rssi = (temp_beacons[beacon_index].rssi + rssi) / 2; temp_beacons[beacon_index].rssi = (temp_beacons[beacon_index].rssi + rssi) / 2;
temp_beacons[beacon_index].timestamp_last = unix_timestamp; temp_beacons[beacon_index].timestamp_last = unix_timestamp;
ESP_LOGD(ENA_BEACON_LOG, "New Timestamp for temporary beacon %d: %u", beacon_index, unix_timestamp); ESP_LOGD(ENA_BEACON_LOG, "update temporary beacon %d at %u", beacon_index, unix_timestamp);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, temp_beacons[beacon_index].rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEX_LEVEL(ENA_BEACON_LOG, temp_beacons[beacon_index].aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_BEACON_LOG, "RSSI %d", temp_beacons[beacon_index].rssi);
ena_storage_set_temp_beacon(temp_beacons_count, &temp_beacons[temp_beacons_count]); ena_storage_set_temp_beacon(temp_beacons_count, &temp_beacons[temp_beacons_count]);
} }
} }

View File

@ -0,0 +1,280 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <time.h>
#include <limits.h>
#include "esp_log.h"
#include "ena-crypto.h"
#include "ena-storage.h"
#include "ena-beacons.h"
#include "ena-exposure.h"
static ena_exposure_config_t DEFAULT_ENA_EXPOSURE_CONFIG = {
// transmission_risk_values
{
MINIMAL, // UNKNOWN
LOW, // CONFIRMED_TEST_LOW
MEDIUM, // CONFIRMED_TEST_STANDARD
HIGH, // CONFIRMED_TEST_HIGH
VERY_HIGH, // CONFIRMED_CLINICAL_DIAGNOSIS
VERY_LOW, // SELF_REPORT
ZERO, // NEGATIVE
MINIMAL // RECURSIVE
},
// duration_risk_values
{
MINIMAL, // D = 0 min
MINIMAL, // D <= 5 min
MEDIUM, // D <= 10 min
VERY_HIGH, // D <= 15 min
VERY_HIGH, // D <= 20 min
MAXIMUM, // D <= 25 min
MAXIMUM, // D <= 30 min
MAXIMUM // D > 30 min
},
// days_risk_values
{
MINIMAL, // >= 14 days
VERY_LOW, // 12-13 days
VERY_LOW, // 10-11 days
MEDIUM, // 8-9 days
HIGH, // 6-7 days
MAXIMUM, // 4-5 days
MAXIMUM, // 2-3 days
MAXIMUM // 0-1 days
},
// attenuation_risk_values
{
MINIMAL, // A > 73 dB
MINIMAL, // 73 >= A > 63
MINIMAL, // 63 >= A > 61
MAXIMUM, // 51 >= A > 33
MAXIMUM, // 33 >= A > 27
MAXIMUM, // 27 >= A > 15
MAXIMUM, // 15 >= A > 10
MAXIMUM // A <= 10
},
};
static const char kFileHeader[] = "EK Export v1 ";
static size_t kFileHeaderSize = sizeof(kFileHeader) - 1;
extern const uint8_t export_bin_start[] asm("_binary_export_bin_start");
extern const uint8_t export_bin_end[] asm("_binary_export_bin_end");
void ena_exposure_keyfiletest(void)
{
ESP_LOG_BUFFER_HEXDUMP(ENA_EXPOSURE_LOG, export_bin_start, (export_bin_end - export_bin_start), ESP_LOG_INFO);
}
void ena_exposure_check(ena_tek_reported_t tek_reported)
{
bool match = false;
ena_beacon_t beacon;
ena_exposure_information_t exposure_info;
exposure_info.duration_minutes = 0;
exposure_info.min_attenuation = INT_MAX;
exposure_info.typical_attenuation = 0;
exposure_info.report_type = tek_reported.report_type;
uint8_t rpi[ENA_KEY_LENGTH];
uint8_t rpik[ENA_KEY_LENGTH];
ena_crypto_rpik(rpik, tek_reported.key_data);
uint32_t beacons_count = ena_storage_beacons_count();
for (int i = 0; i < tek_reported.rolling_period; i++)
{
ena_crypto_rpi(rpi, rpik, tek_reported.rolling_start_interval_number + i);
for (int y = 0; y < beacons_count; y++)
{
ena_storage_get_beacon(y, &beacon);
if (memcmp(beacon.rpi, rpi, sizeof(ENA_KEY_LENGTH)) == 0)
{
match = true;
exposure_info.day = tek_reported.rolling_start_interval_number * ENA_TIME_WINDOW;
exposure_info.duration_minutes += (ENA_BEACON_TRESHOLD / 60);
exposure_info.typical_attenuation = (exposure_info.typical_attenuation + beacon.rssi) / 2;
if (beacon.rssi < exposure_info.min_attenuation)
{
exposure_info.min_attenuation = beacon.rssi;
}
}
}
}
if (match)
{
ena_storage_add_exposure_information(&exposure_info);
}
}
int ena_exposure_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params)
{
int score = 1;
score *= config->transmission_risk_values[params.report_type];
// calc duration level
int duration_level = MINUTES_0;
if (params.duration > 0)
{
if (params.duration <= 5)
{
duration_level = MINUTES_5;
}
else if (params.duration <= 10)
{
duration_level = MINUTES_10;
}
if (params.duration <= 15)
{
duration_level = MINUTES_15;
}
if (params.duration <= 20)
{
duration_level = MINUTES_20;
}
if (params.duration <= 25)
{
duration_level = MINUTES_25;
}
if (params.duration <= 30)
{
duration_level = MINUTES_30;
}
else
{
duration_level = MINUTES_LONGER;
}
}
score *= config->duration_risk_values[duration_level];
// calc days level
int days_level = DAYS_14;
if (params.days < 2)
{
days_level = DAYS_0;
}
else if (params.days < 4)
{
days_level = DAYS_3;
}
else if (params.days < 6)
{
days_level = DAYS_5;
}
else if (params.days < 8)
{
days_level = DAYS_7;
}
else if (params.days < 10)
{
days_level = DAYS_9;
}
else if (params.days < 12)
{
days_level = DAYS_11;
}
else if (params.days < 14)
{
days_level = DAYS_13;
}
score *= config->days_risk_values[days_level];
// calc attenuation level
int attenuation_level = ATTENUATION_73;
if (params.attenuation <= 10)
{
attenuation_level = ATTENUATION_LOWER;
}
else if (params.attenuation <= 15)
{
attenuation_level = ATTENUATION_10;
}
else if (params.attenuation <= 27)
{
attenuation_level = ATTENUATION_15;
}
else if (params.attenuation <= 33)
{
attenuation_level = ATTENUATION_27;
}
else if (params.attenuation <= 51)
{
attenuation_level = ATTENUATION_33;
}
else if (params.attenuation <= 63)
{
attenuation_level = ATTENUATION_51;
}
else if (params.attenuation <= 73)
{
attenuation_level = ATTENUATION_63;
}
score *= config->attenuation_risk_values[attenuation_level];
if (score > 255)
{
score = 255;
}
return score;
}
void ena_exposure_summary(ena_exposure_config_t *config, ena_exposure_summary_t *summary)
{
uint32_t count = ena_storage_exposure_information_count();
uint32_t current_time = (uint32_t)time(NULL);
summary->days_since_last_exposure = INT_MAX;
summary->max_risk_score = 0;
summary->risk_score_sum = 0;
summary->num_exposures = count;
if (count == 0)
{
summary->days_since_last_exposure = -1;
}
ena_exposure_information_t exposure_info;
ena_exposure_parameter_t params;
for (int i = 0; i < count; i++)
{
ena_storage_get_exposure_information(i, &exposure_info);
params.days = (current_time - exposure_info.day) / (60 * 60 * 24); // difference in days
if (params.days < summary->days_since_last_exposure)
{
summary->days_since_last_exposure = params.days;
}
params.duration = exposure_info.duration_minutes;
params.attenuation = exposure_info.typical_attenuation;
int score = ena_exposure_risk_score(config, params);
if (score > summary->max_risk_score)
{
summary->max_risk_score = score;
}
summary->risk_score_sum += score;
}
ena_exposure_keyfiletest();
}
ena_exposure_config_t *ena_exposure_default_config(void)
{
return &DEFAULT_ENA_EXPOSURE_CONFIG;
}

View File

@ -24,14 +24,15 @@
const int ENA_STORAGE_TEK_COUNT_ADDRESS = (ENA_STORAGE_START_ADDRESS); // starting address for TEK COUNT const int ENA_STORAGE_TEK_COUNT_ADDRESS = (ENA_STORAGE_START_ADDRESS); // starting address for TEK COUNT
const int ENA_STORAGE_TEK_START_ADDRESS = (ENA_STORAGE_TEK_COUNT_ADDRESS + sizeof(uint32_t)); const int ENA_STORAGE_TEK_START_ADDRESS = (ENA_STORAGE_TEK_COUNT_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS = (ENA_STORAGE_TEK_START_ADDRESS + sizeof(ena_tek_t) * ENA_STORAGE_TEK_MAX); const int ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS = (ENA_STORAGE_TEK_START_ADDRESS + sizeof(ena_tek_t) * ENA_STORAGE_TEK_MAX);
const int ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS = (ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS = (ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS + sizeof(ena_exposure_information_t) * ENA_STORAGE_EXPOSURE_INFORMATION_MAX);
const int ENA_STORAGE_TEMP_BEACONS_START_ADDRESS = (ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS + sizeof(uint32_t)); const int ENA_STORAGE_TEMP_BEACONS_START_ADDRESS = (ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS + sizeof(uint32_t));
const int ENA_STORAGE_BEACONS_COUNT_ADDRESS = (ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + sizeof(ena_temp_beacon_t) * ENA_STORAGE_TEMP_BEACONS_MAX); const int ENA_STORAGE_BEACONS_COUNT_ADDRESS = (ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + sizeof(ena_beacon_t) * ENA_STORAGE_TEMP_BEACONS_MAX);
const int ENA_STORAGE_BEACONS_START_ADDRESS = (ENA_STORAGE_BEACONS_COUNT_ADDRESS + sizeof(uint32_t)); const int ENA_STORAGE_BEACONS_START_ADDRESS = (ENA_STORAGE_BEACONS_COUNT_ADDRESS + sizeof(uint32_t));
void ena_storage_read(size_t address, void *data, size_t size) void ena_storage_read(size_t address, void *data, size_t size)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_read");
const esp_partition_t *partition = esp_partition_find_first( const esp_partition_t *partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME); ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME);
assert(partition); assert(partition);
@ -39,12 +40,10 @@ void ena_storage_read(size_t address, void *data, size_t size)
vTaskDelay(1); vTaskDelay(1);
ESP_LOGD(ENA_STORAGE_LOG, "read data at %u", address); ESP_LOGD(ENA_STORAGE_LOG, "read data at %u", address);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, data, size, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, data, size, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_read");
} }
void ena_storage_write(size_t address, void *data, size_t size) void ena_storage_write(size_t address, void *data, size_t size)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_write");
const int block_num = address / BLOCK_SIZE; const int block_num = address / BLOCK_SIZE;
// check for overflow // check for overflow
if (address + size <= (block_num + 1) * BLOCK_SIZE) if (address + size <= (block_num + 1) * BLOCK_SIZE)
@ -90,13 +89,10 @@ void ena_storage_write(size_t address, void *data, size_t size)
ena_storage_write(block2_address, data2, data2_size); ena_storage_write(block2_address, data2, data2_size);
free(data2); free(data2);
} }
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_write");
} }
void ena_storage_shift_delete(size_t address, size_t end_address, size_t size) void ena_storage_shift_delete(size_t address, size_t end_address, size_t size)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_shift_delete");
int block_num_start = address / BLOCK_SIZE; int block_num_start = address / BLOCK_SIZE;
// check for overflow // check for overflow
if (address + size <= (block_num_start + 1) * BLOCK_SIZE) if (address + size <= (block_num_start + 1) * BLOCK_SIZE)
@ -146,12 +142,10 @@ void ena_storage_shift_delete(size_t address, size_t end_address, size_t size)
ena_storage_shift_delete(block1_address, block2_address, data1_size); ena_storage_shift_delete(block1_address, block2_address, data1_size);
ena_storage_shift_delete(block2_address, end_address - data1_size, data2_size); ena_storage_shift_delete(block2_address, end_address - data1_size, data2_size);
} }
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_shift_delete");
} }
uint32_t ena_storage_read_last_tek(ena_tek_t *tek) uint32_t ena_storage_read_last_tek(ena_tek_t *tek)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_read_tek");
uint32_t tek_count = 0; uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
if (tek_count < 1) if (tek_count < 1)
@ -163,14 +157,11 @@ uint32_t ena_storage_read_last_tek(ena_tek_t *tek)
ESP_LOGD(ENA_STORAGE_LOG, "read last tek %u:", tek->enin); ESP_LOGD(ENA_STORAGE_LOG, "read last tek %u:", tek->enin);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, tek->key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, tek->key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_read_tek");
return tek_count; return tek_count;
} }
void ena_storage_write_tek(ena_tek_t *tek) void ena_storage_write_tek(ena_tek_t *tek)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_write_tek");
uint32_t tek_count = 0; uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
uint8_t index = (tek_count % ENA_STORAGE_TEK_MAX); uint8_t index = (tek_count % ENA_STORAGE_TEK_MAX);
@ -181,33 +172,49 @@ void ena_storage_write_tek(ena_tek_t *tek)
ESP_LOGD(ENA_STORAGE_LOG, "write tek: ENIN %u", tek->enin); ESP_LOGD(ENA_STORAGE_LOG, "write tek: ENIN %u", tek->enin);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, tek->key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, tek->key_data, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_write_tek"); }
uint32_t ena_storage_exposure_information_count(void)
{
uint32_t count = 0;
ena_storage_read(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "read exposure information count: %u", count);
return count;
}
void ena_storage_get_exposure_information(uint32_t index, ena_exposure_information_t *exposure_info)
{
ena_storage_read(ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS + index * sizeof(ena_exposure_information_t), exposure_info, sizeof(ena_exposure_information_t));
ESP_LOGD(ENA_STORAGE_LOG, "read exporuse information: day %u, duration %d", exposure_info->day, exposure_info->duration_minutes);
}
void ena_storage_add_exposure_information(ena_exposure_information_t *exposure_info)
{
uint32_t count = ena_storage_exposure_information_count();
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS + count * sizeof(ena_exposure_information_t), exposure_info, sizeof(ena_exposure_information_t));
count++;
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "write exposure info: day %u, duration %d", exposure_info->day, exposure_info->duration_minutes);
} }
uint32_t ena_storage_temp_beacons_count(void) uint32_t ena_storage_temp_beacons_count(void)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_temp_beacons_count");
uint32_t count = 0; uint32_t count = 0;
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "read temp contancts count: %u", count); ESP_LOGD(ENA_STORAGE_LOG, "read temp beacons count: %u", count);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_temp_beacons_count");
return count; return count;
} }
void ena_storage_get_temp_beacon(uint32_t index, ena_temp_beacon_t *beacon) void ena_storage_get_temp_beacon(uint32_t index, ena_beacon_t *beacon)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_read_temp_beacon"); ena_storage_read(ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_temp_beacon_t), beacon, sizeof(ena_temp_beacon_t));
ESP_LOGD(ENA_STORAGE_LOG, "read temp beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi); ESP_LOGD(ENA_STORAGE_LOG, "read temp beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_read_temp_beacon");
} }
uint32_t ena_storage_add_temp_beacon(ena_temp_beacon_t *beacon) uint32_t ena_storage_add_temp_beacon(ena_beacon_t *beacon)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_add_temp_beacon");
uint32_t count = ena_storage_temp_beacons_count(); uint32_t count = ena_storage_temp_beacons_count();
// overwrite older temporary beacons?! // overwrite older temporary beacons?!
uint8_t index = count % ENA_STORAGE_TEMP_BEACONS_MAX; uint8_t index = count % ENA_STORAGE_TEMP_BEACONS_MAX;
@ -217,73 +224,60 @@ uint32_t ena_storage_add_temp_beacon(ena_temp_beacon_t *beacon)
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
count++; count++;
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_add_temp_beacon");
return count - 1; return count - 1;
} }
void ena_storage_set_temp_beacon(uint32_t index, ena_temp_beacon_t *beacon) void ena_storage_set_temp_beacon(uint32_t index, ena_beacon_t *beacon)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_set_temp_beacon"); ena_storage_write(ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_temp_beacon_t), beacon, sizeof(ena_temp_beacon_t));
ESP_LOGD(ENA_STORAGE_LOG, "set temp beacon at %u: first %u, last %u and rssi %d", index, beacon->timestamp_first, beacon->timestamp_last, beacon->rssi); ESP_LOGD(ENA_STORAGE_LOG, "set temp beacon at %u: first %u, last %u and rssi %d", index, beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_set_temp_beacon");
} }
void ena_storage_remove_temp_beacon(uint32_t index) void ena_storage_remove_temp_beacon(uint32_t index)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_remove_temp_beacon");
uint32_t count = ena_storage_temp_beacons_count(); uint32_t count = ena_storage_temp_beacons_count();
size_t address_from = ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_temp_beacon_t); size_t address_from = ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t);
size_t address_to = ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + count * sizeof(ena_temp_beacon_t); size_t address_to = ENA_STORAGE_TEMP_BEACONS_START_ADDRESS + count * sizeof(ena_beacon_t);
ena_storage_shift_delete(address_from, address_to, sizeof(ena_temp_beacon_t)); ena_storage_shift_delete(address_from, address_to, sizeof(ena_beacon_t));
count--; count--;
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "remove temp beacon: %u", index); ESP_LOGD(ENA_STORAGE_LOG, "remove temp beacon: %u", index);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_remove_temp_beacon");
} }
uint32_t ena_storage_beacons_count(void) uint32_t ena_storage_beacons_count(void)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_beacons_count");
uint32_t count = 0; uint32_t count = 0;
ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "read contancts count: %u", count); ESP_LOGD(ENA_STORAGE_LOG, "read contancts count: %u", count);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_beacons_count");
return count; return count;
} }
void ena_storage_get_beacon(uint32_t index, ena_beacon_t *beacon) void ena_storage_get_beacon(uint32_t index, ena_beacon_t *beacon)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_read_beacon");
ena_storage_read(ENA_STORAGE_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t)); ena_storage_read(ENA_STORAGE_BEACONS_START_ADDRESS + index * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
ESP_LOGD(ENA_STORAGE_LOG, "read beacon: timestamp %u and rssi %d", beacon->timestamp, beacon->rssi); ESP_LOGD(ENA_STORAGE_LOG, "read beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_read_beacon");
} }
void ena_storage_add_beacon(ena_beacon_t *beacon) void ena_storage_add_beacon(ena_beacon_t *beacon)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_write_beacon");
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
uint32_t count = ena_storage_beacons_count(); uint32_t count = ena_storage_beacons_count();
ena_storage_write(ENA_STORAGE_BEACONS_START_ADDRESS + count * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t)); ena_storage_write(ENA_STORAGE_BEACONS_START_ADDRESS + count * sizeof(ena_beacon_t), beacon, sizeof(ena_beacon_t));
count++; count++;
ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "write beacon: timestamp %u and rssi %d", beacon->timestamp, beacon->rssi); ESP_LOGD(ENA_STORAGE_LOG, "write beacon: first %u, last %u and rssi %d", beacon->timestamp_first, beacon->timestamp_last, beacon->rssi);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->rpi, ENA_KEY_LENGTH, ESP_LOG_DEBUG);
ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEXDUMP(ENA_STORAGE_LOG, beacon->aem, ENA_AEM_METADATA_LENGTH, ESP_LOG_DEBUG);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_write_beacon");
} }
void ena_storage_erase(void) void ena_storage_erase(void)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_erase");
const esp_partition_t *partition = esp_partition_find_first( const esp_partition_t *partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME); ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, ENA_STORAGE_PARTITION_NAME);
assert(partition); assert(partition);
@ -292,23 +286,20 @@ void ena_storage_erase(void)
uint32_t count = 0; uint32_t count = 0;
ena_storage_write(ENA_STORAGE_TEK_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_write(ENA_STORAGE_TEK_COUNT_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t)); ena_storage_write(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_erase");
} }
void ena_storage_erase_tek(void) void ena_storage_erase_tek(void)
{ {
uint32_t count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEK_MAX;
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_erase_teks"); if (count < ENA_STORAGE_TEK_MAX)
uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
uint8_t stored = ENA_STORAGE_TEK_MAX;
if (tek_count < ENA_STORAGE_TEK_MAX)
{ {
stored = tek_count; stored = count;
} }
size_t size = sizeof(uint32_t) + stored * sizeof(ena_tek_t); size_t size = sizeof(uint32_t) + stored * sizeof(ena_tek_t);
@ -316,12 +307,27 @@ void ena_storage_erase_tek(void)
ena_storage_write(ENA_STORAGE_TEK_COUNT_ADDRESS, zeros, size); ena_storage_write(ENA_STORAGE_TEK_COUNT_ADDRESS, zeros, size);
free(zeros); free(zeros);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d teks (size %u at %u)", stored, size, ENA_STORAGE_TEK_COUNT_ADDRESS); ESP_LOGI(ENA_STORAGE_LOG, "erased %d teks (size %u at %u)", stored, size, ENA_STORAGE_TEK_COUNT_ADDRESS);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_erase_teks"); }
void ena_storage_erase_exposure_information(void)
{
uint32_t count = ena_storage_exposure_information_count();
uint32_t stored = ENA_STORAGE_EXPOSURE_INFORMATION_MAX;
if (count < ENA_STORAGE_EXPOSURE_INFORMATION_MAX)
{
stored = count;
}
size_t size = sizeof(uint32_t) + stored * sizeof(ena_exposure_information_t);
uint8_t *zeros = calloc(size, sizeof(uint8_t));
ena_storage_write(ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS, zeros, size);
free(zeros);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d exposure information (size %u at %u)", stored, size, ENA_STORAGE_EXPOSURE_INFORMATION_COUNT_ADDRESS);
} }
void ena_storage_erase_temporary_beacon(void) void ena_storage_erase_temporary_beacon(void)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_erase_temporary_beacons");
uint32_t beacon_count = 0; uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEMP_BEACONS_MAX; uint32_t stored = ENA_STORAGE_TEMP_BEACONS_MAX;
@ -331,18 +337,16 @@ void ena_storage_erase_temporary_beacon(void)
stored = beacon_count; stored = beacon_count;
} }
size_t size = sizeof(uint32_t) + stored * sizeof(ena_temp_beacon_t); size_t size = sizeof(uint32_t) + stored * sizeof(ena_beacon_t);
uint8_t *zeros = calloc(size, sizeof(uint8_t)); uint8_t *zeros = calloc(size, sizeof(uint8_t));
ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, zeros, size); ena_storage_write(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, zeros, size);
free(zeros); free(zeros);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d temporary beacons (size %u at %u)", stored, size, ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS); ESP_LOGI(ENA_STORAGE_LOG, "erased %d temporary beacons (size %u at %u)", stored, size, ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_erase_temporary_beacons");
} }
void ena_storage_erase_beacon(void) void ena_storage_erase_beacon(void)
{ {
ESP_LOGD(ENA_STORAGE_LOG, "START ena_storage_erase_beacon");
uint32_t beacon_count = 0; uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
@ -352,7 +356,6 @@ void ena_storage_erase_beacon(void)
free(zeros); free(zeros);
ESP_LOGI(ENA_STORAGE_LOG, "erased %d beacons (size %u at %u)", beacon_count, size, ENA_STORAGE_BEACONS_COUNT_ADDRESS); ESP_LOGI(ENA_STORAGE_LOG, "erased %d beacons (size %u at %u)", beacon_count, size, ENA_STORAGE_BEACONS_COUNT_ADDRESS);
ESP_LOGD(ENA_STORAGE_LOG, "END ena_storage_erase_beacon");
} }
void ena_storage_dump_hash_array(uint8_t *data, size_t size) void ena_storage_dump_hash_array(uint8_t *data, size_t size)
@ -370,12 +373,12 @@ void ena_storage_dump_hash_array(uint8_t *data, size_t size)
} }
} }
void ena_storage_dump_tek(void) void ena_storage_dump_teks(void)
{ {
ena_tek_t tek; ena_tek_t tek;
uint32_t tek_count = 0; uint32_t tek_count = 0;
ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_TEK_COUNT_ADDRESS, &tek_count, sizeof(uint32_t));
uint8_t stored = ENA_STORAGE_TEK_MAX; uint32_t stored = ENA_STORAGE_TEK_MAX;
if (tek_count < ENA_STORAGE_TEK_MAX) if (tek_count < ENA_STORAGE_TEK_MAX)
{ {
@ -395,9 +398,31 @@ void ena_storage_dump_tek(void)
} }
} }
void ena_storage_dump_exposure_information(void)
{
ena_exposure_information_t exposure_info;
uint32_t exposure_information_count = ena_storage_exposure_information_count();
uint32_t stored = ENA_STORAGE_EXPOSURE_INFORMATION_MAX;
if (exposure_information_count < ENA_STORAGE_EXPOSURE_INFORMATION_MAX)
{
stored = exposure_information_count;
}
ESP_LOGD(ENA_STORAGE_LOG, "%u exposure information (%u stored)\n", exposure_information_count, stored);
printf("#,day,typical_attenuation,min_attenuation,duration_minutes,report_type\n");
for (int i = 0; i < stored; i++)
{
size_t address = ENA_STORAGE_EXPOSURE_INFORMATION_START_ADDRESS + i * sizeof(ena_exposure_information_t);
ena_storage_read(address, &exposure_info, sizeof(ena_exposure_information_t));
printf("%d,%u,%d,%d,%d,%d\n", i, exposure_info.day, exposure_info.typical_attenuation, exposure_info.min_attenuation, exposure_info.duration_minutes, exposure_info.report_type);
}
}
void ena_storage_dump_temp_beacons(void) void ena_storage_dump_temp_beacons(void)
{ {
ena_temp_beacon_t beacon; ena_beacon_t beacon;
uint32_t beacon_count = 0; uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_TEMP_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
uint32_t stored = ENA_STORAGE_TEMP_BEACONS_MAX; uint32_t stored = ENA_STORAGE_TEMP_BEACONS_MAX;
@ -426,11 +451,11 @@ void ena_storage_dump_beacons(void)
uint32_t beacon_count = 0; uint32_t beacon_count = 0;
ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t)); ena_storage_read(ENA_STORAGE_BEACONS_COUNT_ADDRESS, &beacon_count, sizeof(uint32_t));
ESP_LOGD(ENA_STORAGE_LOG, "%u beacons\n", beacon_count); ESP_LOGD(ENA_STORAGE_LOG, "%u beacons\n", beacon_count);
printf("#,timestamp,rpi,aem,rssi\n"); printf("#,timestamp_first,timestamp_last,rpi,aem,rssi\n");
for (int i = 0; i < beacon_count; i++) for (int i = 0; i < beacon_count; i++)
{ {
ena_storage_get_beacon(i, &beacon); ena_storage_get_beacon(i, &beacon);
printf("%d,%u,", i, beacon.timestamp); printf("%d,%u,%u,", i, beacon.timestamp_first, beacon.timestamp_last);
ena_storage_dump_hash_array(beacon.rpi, ENA_KEY_LENGTH); ena_storage_dump_hash_array(beacon.rpi, ENA_KEY_LENGTH);
printf(","); printf(",");
ena_storage_dump_hash_array(beacon.aem, ENA_AEM_METADATA_LENGTH); ena_storage_dump_hash_array(beacon.aem, ENA_AEM_METADATA_LENGTH);

View File

@ -49,8 +49,8 @@ void ena_next_rpi_timestamp(uint32_t timestamp)
void ena_run(void *pvParameter) void ena_run(void *pvParameter)
{ {
uint32_t unix_timestamp = 0; static uint32_t unix_timestamp = 0;
uint32_t current_enin = 0; static uint32_t current_enin = 0;
while (1) while (1)
{ {
unix_timestamp = (uint32_t)time(NULL); unix_timestamp = (uint32_t)time(NULL);
@ -97,6 +97,7 @@ void ena_start(void)
#if (CONFIG_ENA_STORAGE_ERASE) #if (CONFIG_ENA_STORAGE_ERASE)
ena_storage_erase(); ena_storage_erase();
#endif #endif
// init NVS for BLE // init NVS for BLE
esp_err_t ret; esp_err_t ret;
ret = nvs_flash_init(); ret = nvs_flash_init();
@ -172,5 +173,5 @@ void ena_start(void)
ena_bluetooth_scan_start(ENA_SCANNING_TIME); ena_bluetooth_scan_start(ENA_SCANNING_TIME);
// what is a good stack size here? // what is a good stack size here?
xTaskCreate(&ena_run, "ena_run", configMINIMAL_STACK_SIZE * 8, NULL, 5, NULL); xTaskCreate(&ena_run, "ena_run", ENA_RAM, NULL, 5, NULL);
} }

View File

@ -0,0 +1,177 @@
// Copyright 2020 Lukas Haubaum
//
// Licensed under the GNU Affero General Public License, Version 3;
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// https://www.gnu.org/licenses/agpl-3.0.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ena_EXPOSURE_H_
#define _ena_EXPOSURE_H_
#include <stdio.h>
#include "ena-crypto.h"
#define ENA_EXPOSURE_LOG "ESP-ENA-exposure" // TAG for Logging
/**
* @brief report type
*/
typedef enum
{
UNKNOWN = 0,
CONFIRMED_TEST_LOW = 1,
CONFIRMED_TEST_STANDARD = 2,
CONFIRMED_TEST_HIGH = 3,
CONFIRMED_CLINICAL_DIAGNOSIS = 4,
SELF_REPORT = 5,
NEGATIVE = 6,
RECURSIVE = 7,
} ena_report_type_t;
/**
* @brief duration risk
*/
typedef enum
{
MINUTES_0 = 0, // D = 0 min
MINUTES_5 = 1, // D <= 5 min
MINUTES_10 = 2, // D <= 10 min
MINUTES_15 = 3, // D <= 15 min
MINUTES_20 = 4, // D <= 20 min
MINUTES_25 = 5, // D <= 25 min
MINUTES_30 = 6, // D <= 30 min
MINUTES_LONGER = 7, // D > 30 min
} ena_duration_risk_t;
/**
* @brief day risk
*/
typedef enum
{
DAYS_14 = 0, // >= 14 days
DAYS_13 = 1, // 12-13 days
DAYS_11 = 2, // 10-11 days
DAYS_9 = 3, // 8-9 days
DAYS_7 = 4, // 6-7 days
DAYS_5 = 5, // 4-5 days
DAYS_3 = 6, // 2-3 days
DAYS_0 = 7, // 0-1 days
} ena_day_risk_t;
/**
* @brief attenuation risk
*/
typedef enum
{
ATTENUATION_73 = 0, // A > 73 dB
ATTENUATION_63 = 1, // 73 >= A > 63
ATTENUATION_51 = 2, // 63 >= A > 61
ATTENUATION_33 = 3, // 51 >= A > 33
ATTENUATION_27 = 4, // 33 >= A > 27
ATTENUATION_15 = 5, // 27 >= A > 15
ATTENUATION_10 = 6, // 15 >= A > 10
ATTENUATION_LOWER = 7, // A <= 10
} ena_attenuation_risk_t;
/**
* @brief risk level from 0-8
*/
typedef enum
{
ZERO = 0,
MINIMAL = 1,
VERY_LOW = 2,
LOW = 3,
MEDIUM = 4,
INCREASED = 5,
HIGH = 6,
VERY_HIGH = 7,
MAXIMUM = 8,
} ena_risk_level_t;
/**
* @brief structure for exposure configuration
*
* The exposure configuration is used to calculate the risk score.
*/
typedef struct __attribute__((__packed__))
{
uint8_t transmission_risk_values[8];
uint8_t duration_risk_values[8];
uint8_t days_risk_values[8];
uint8_t attenuation_risk_values[8];
} ena_exposure_config_t;
/**
* @brief structure for exposure parameter
*
* These parameter are obtained from an exposure information to calculate the risk score.
*/
typedef struct __attribute__((__packed__))
{
ena_report_type_t report_type;
int days;
int duration;
int attenuation;
} ena_exposure_parameter_t;
/**
* @brief structure for exposure summary
*
* This represents the current state of all exposures.
*/
typedef struct __attribute__((__packed__))
{
int days_since_last_exposure; // Number of days since the most recent exposure.
int num_exposures; // Number of all exposure information
int max_risk_score; // max. risk score of all exposure information
int risk_score_sum; // sum of all risk_scores
} ena_exposure_summary_t;
/**
* @brief structure for a reported TEK
*/
typedef struct __attribute__((__packed__))
{
uint8_t key_data[ENA_KEY_LENGTH]; // Key of infected user
uint32_t rolling_start_interval_number; // The interval number since epoch for which a key starts
uint8_t rolling_period; // Increments of 10 minutes describing how long a key is valid
ena_report_type_t report_type; // Type of diagnosis associated with a key.
uint32_t days_since_onset_of_symptoms; // Number of days elapsed between symptom onset and the TEK being used. E.g. 2 means TEK is 2 days after onset of symptoms.
} ena_tek_reported_t;
/**
* @brief check for exposure for a reported tek and store exposure information on finding
*
* @param[in] tek_reported the reported tek to check
*/
void ena_exposure_check(ena_tek_reported_t tek_reported);
/**
* @brief calculate risk score
*
* @param[in] config the exposure configuration used for calculating score
* @param[in] params the exposure parameter to calculate with
*/
int ena_exposure_risk_score(ena_exposure_config_t *config, ena_exposure_parameter_t params);
/**
* @brief returns the current exposure summary
*
* @param[in] config the exposure configuration used for calculating scores
* @param[out] summary pointer to exposure summary to write to
*/
void ena_exposure_summary(ena_exposure_config_t *config, ena_exposure_summary_t *summary);
/**
* @brief return a default exposure configuration
*/
ena_exposure_config_t *ena_exposure_default_config(void);
#endif

View File

@ -16,11 +16,12 @@
#include "ena-crypto.h" #include "ena-crypto.h"
#define ENA_STORAGE_LOG "ESP-ENA-storage" // TAG for Logging #define ENA_STORAGE_LOG "ESP-ENA-storage" // TAG for Logging
#define ENA_STORAGE_PARTITION_NAME (CONFIG_ENA_STORAGE_PARTITION_NAME) // name of partition to use for storing #define ENA_STORAGE_PARTITION_NAME (CONFIG_ENA_STORAGE_PARTITION_NAME) // name of partition to use for storing
#define ENA_STORAGE_START_ADDRESS (CONFIG_ENA_STORAGE_START_ADDRESS) // start address of storage #define ENA_STORAGE_START_ADDRESS (CONFIG_ENA_STORAGE_START_ADDRESS) // start address of storage
#define ENA_STORAGE_TEK_MAX (CONFIG_ENA_STORAGE_TEK_MAX) // Period of storing TEKs // length of a stored beacon -> RPI keysize + AEM size + 4 Bytes for ENIN + 4 Bytes for RSSI #define ENA_STORAGE_TEK_MAX (CONFIG_ENA_STORAGE_TEK_MAX) // Period of storing TEKs // length of a stored beacon -> RPI keysize + AEM size + 4 Bytes for ENIN + 4 Bytes for RSSI
#define ENA_STORAGE_TEMP_BEACONS_MAX (CONFIG_ENA_STORAGE_TEMP_BEACONS_MAX) // Maximum number of temporary stored beacons #define ENA_STORAGE_TEMP_BEACONS_MAX (CONFIG_ENA_STORAGE_TEMP_BEACONS_MAX) // Maximum number of temporary stored beacons // length of a stored beacon -> RPI keysize + AEM size + 4 Bytes for ENIN + 4 Bytes for RSSI
#define ENA_STORAGE_EXPOSURE_INFORMATION_MAX (CONFIG_ENA_STORAGE_EXPOSURE_INFORMATION_MAX) // Maximum number of stored exposure information
/** /**
* @brief structure for TEK * @brief structure for TEK
@ -33,7 +34,7 @@ typedef struct __attribute__((__packed__))
} ena_tek_t; } ena_tek_t;
/** /**
* @brief sturcture for storing a temporary beacon * @brief sturcture for storing a beacons
*/ */
typedef struct __attribute__((__packed__)) typedef struct __attribute__((__packed__))
{ {
@ -42,18 +43,19 @@ typedef struct __attribute__((__packed__))
uint32_t timestamp_first; // timestamp of first recognition uint32_t timestamp_first; // timestamp of first recognition
uint32_t timestamp_last; // timestamp of last recognition uint32_t timestamp_last; // timestamp of last recognition
int rssi; // average measured RSSI int rssi; // average measured RSSI
} ena_temp_beacon_t; } ena_beacon_t;
/** /**
* @brief sturcture for permanently storing a beacon after threshold reached * @brief structure for storing a Exposure Information (combined ExposureInformation, ExposureWindow and ScanInstance from Google API >= 1.5)
*/ */
typedef struct __attribute__((__packed__)) typedef struct __attribute__((__packed__))
{ {
uint8_t rpi[ENA_KEY_LENGTH]; // received RPI of beacon uint32_t day; // Day of the exposure, using UTC, encapsulated as the time of the beginning of that day.
uint8_t aem[ENA_AEM_METADATA_LENGTH]; // received AEM of beacon int typical_attenuation; // Aggregation of the attenuations of all of a given diagnosis key's beacons received during the scan, in dB.
uint32_t timestamp; // timestamp of last recognition int min_attenuation; // Minimum attenuation of all of a given diagnosis key's beacons received during the scan, in dB.
int rssi; // average measured RSSI int duration_minutes; //The duration of the exposure in minutes.
} ena_beacon_t; int report_type; // Type of diagnosis associated with a key.
} ena_exposure_information_t;
/** /**
* @brief read bytes at given address * @brief read bytes at given address
@ -101,6 +103,29 @@ uint32_t ena_storage_read_last_tek(ena_tek_t *tek);
*/ */
void ena_storage_write_tek(ena_tek_t *tek); void ena_storage_write_tek(ena_tek_t *tek);
/**
* @brief get number of stored exposure information
*
* @return
* total number of exposure information stored
*/
uint32_t ena_storage_exposure_information_count(void);
/**
* @brief get exposure information at given index
*
* @param[in] index the index of the exposure information to read
* @param[out] exposure_info pointer to exposure information to write to
*/
void ena_storage_get_exposure_information(uint32_t index, ena_exposure_information_t *exposure_info);
/**
* @brief store exposure information
*
* @param[in] exposure_info new exposure information to store
*/
void ena_storage_add_exposure_information(ena_exposure_information_t *exposure_info);
/** /**
* @brief get number of stored temporary beacons * @brief get number of stored temporary beacons
* *
@ -113,9 +138,9 @@ uint32_t ena_storage_temp_beacons_count(void);
* @brief get temporary beacon at given index * @brief get temporary beacon at given index
* *
* @param[in] index the index of the temporary beacon to read * @param[in] index the index of the temporary beacon to read
* @param[out] beacon pointer to temporary to write to * @param[out] beacon pointer to temporary beacon to write to
*/ */
void ena_storage_get_temp_beacon(uint32_t index, ena_temp_beacon_t *beacon); void ena_storage_get_temp_beacon(uint32_t index, ena_beacon_t *beacon);
/** /**
* @brief store temporary beacon * @brief store temporary beacon
@ -125,7 +150,7 @@ void ena_storage_get_temp_beacon(uint32_t index, ena_temp_beacon_t *beacon);
* @return * @return
* index of new stored beacon * index of new stored beacon
*/ */
uint32_t ena_storage_add_temp_beacon(ena_temp_beacon_t *beacon); uint32_t ena_storage_add_temp_beacon(ena_beacon_t *beacon);
/** /**
* @brief store temporary beacon at given index * @brief store temporary beacon at given index
@ -133,7 +158,7 @@ uint32_t ena_storage_add_temp_beacon(ena_temp_beacon_t *beacon);
* @param[in] index the index of the temporary beacon to overwrite * @param[in] index the index of the temporary beacon to overwrite
* @param[in] beacon temporary beacon to store * @param[in] beacon temporary beacon to store
*/ */
void ena_storage_set_temp_beacon(uint32_t index, ena_temp_beacon_t *beacon); void ena_storage_set_temp_beacon(uint32_t index, ena_beacon_t *beacon);
/** /**
* @brief remove temporary beacon at given index * @brief remove temporary beacon at given index
@ -180,6 +205,14 @@ void ena_storage_erase(void);
*/ */
void ena_storage_erase_tek(void); void ena_storage_erase_tek(void);
/**
* @brief erase all stored exposure information
*
* This function deletes all stored exposure information and resets counter to zero.
*/
void ena_storage_erase_exposure_information(void);
/** /**
* @brief erase all stored temporary beacons * @brief erase all stored temporary beacons
* *
@ -200,7 +233,16 @@ void ena_storage_erase_beacon(void);
* This function prints all stored TEKs to serial output in * This function prints all stored TEKs to serial output in
* the following CSV format: #,enin,tek * the following CSV format: #,enin,tek
*/ */
void ena_storage_dump_tek(void); void ena_storage_dump_teks(void);
/**
* @brief dump all stored exposure information to serial output
*
* This function prints all stored exposure information to serial output in
* the following CSV format: #,day,typical_attenuation,min_attenuation,duration_minutes,report_type
*/
void ena_storage_dump_exposure_information(void);
/** /**
* @brief dump all stored temporary beacons to serial output * @brief dump all stored temporary beacons to serial output

View File

@ -15,6 +15,7 @@
#define _ena_H_ #define _ena_H_
#define ENA_LOG "ESP-ENA" // TAG for Logging #define ENA_LOG "ESP-ENA" // TAG for Logging
#define ENA_RAM (CONFIG_ENA_RAM) // change advertising payload and therefore the BT address
#define ENA_BT_ROTATION_TIMEOUT_INTERVAL (CONFIG_ENA_BT_ROTATION_TIMEOUT_INTERVAL) // change advertising payload and therefore the BT address #define ENA_BT_ROTATION_TIMEOUT_INTERVAL (CONFIG_ENA_BT_ROTATION_TIMEOUT_INTERVAL) // change advertising payload and therefore the BT address
#define ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL (CONFIG_ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL) // random intervall change for BT address change #define ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL (CONFIG_ENA_BT_RANDOMIZE_ROTATION_TIMEOUT_INTERVAL) // random intervall change for BT address change

Binary file not shown.

Binary file not shown.

View File

@ -31,6 +31,7 @@ void i2c_main_init()
.master.clk_speed = I2C_CLK_SPEED}; .master.clk_speed = I2C_CLK_SPEED};
ESP_ERROR_CHECK(i2c_param_config(I2C_NUM_0, &i2c_config)); ESP_ERROR_CHECK(i2c_param_config(I2C_NUM_0, &i2c_config));
ESP_ERROR_CHECK(i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0, 0)); ESP_ERROR_CHECK(i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0, 0));
i2c_initialized = true;
} }
bool i2c_is_initialized() bool i2c_is_initialized()

View File

@ -0,0 +1,8 @@
idf_component_register(
SRCS
"pb_common.c"
"pb_decode.c"
"pb_encode.c"
"TemporaryExposureKeyExport.pb.c"
INCLUDE_DIRS "."
)

View File

@ -0,0 +1,19 @@
/* Automatically generated nanopb constant definitions */
/* Generated by nanopb-0.4.2 */
#include "TemporaryExposureKeyExport.pb.h"
#if PB_PROTO_HEADER_VERSION != 40
#error Regenerate this file with the current version of nanopb generator.
#endif
PB_BIND(TemporaryExposureKeyExport, TemporaryExposureKeyExport, AUTO)
PB_BIND(SignatureInfo, SignatureInfo, AUTO)
PB_BIND(TemporaryExposureKey, TemporaryExposureKey, AUTO)

View File

@ -0,0 +1,147 @@
/* Automatically generated nanopb header */
/* Generated by nanopb-0.4.2 */
#ifndef PB_TEMPORARYEXPOSUREKEYEXPORT_PB_H_INCLUDED
#define PB_TEMPORARYEXPOSUREKEYEXPORT_PB_H_INCLUDED
#include <pb.h>
#if PB_PROTO_HEADER_VERSION != 40
#error Regenerate this file with the current version of nanopb generator.
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* Enum definitions */
typedef enum _TemporaryExposureKey_ReportType {
TemporaryExposureKey_ReportType_UNKNOWN = 0,
TemporaryExposureKey_ReportType_CONFIRMED_TEST = 1,
TemporaryExposureKey_ReportType_CONFIRMED_CLINICAL_DIAGNOSIS = 2,
TemporaryExposureKey_ReportType_SELF_REPORT = 3,
TemporaryExposureKey_ReportType_RECURSIVE = 4,
TemporaryExposureKey_ReportType_REVOKED = 5
} TemporaryExposureKey_ReportType;
/* Struct definitions */
typedef struct _SignatureInfo {
pb_callback_t verification_key_version;
pb_callback_t verification_key_id;
pb_callback_t signature_algorithm;
} SignatureInfo;
typedef struct _TemporaryExposureKey {
pb_callback_t key_data;
bool has_transmission_risk_level;
int32_t transmission_risk_level;
bool has_rolling_start_interval_number;
int32_t rolling_start_interval_number;
bool has_rolling_period;
int32_t rolling_period;
bool has_report_type;
TemporaryExposureKey_ReportType report_type;
bool has_days_since_onset_of_symptoms;
int32_t days_since_onset_of_symptoms;
} TemporaryExposureKey;
typedef struct _TemporaryExposureKeyExport {
bool has_start_timestamp;
uint64_t start_timestamp;
bool has_end_timestamp;
uint64_t end_timestamp;
pb_callback_t region;
bool has_batch_num;
int32_t batch_num;
bool has_batch_size;
int32_t batch_size;
pb_callback_t signature_infos;
pb_callback_t keys;
pb_callback_t revised_keys;
} TemporaryExposureKeyExport;
/* Helper constants for enums */
#define _TemporaryExposureKey_ReportType_MIN TemporaryExposureKey_ReportType_UNKNOWN
#define _TemporaryExposureKey_ReportType_MAX TemporaryExposureKey_ReportType_REVOKED
#define _TemporaryExposureKey_ReportType_ARRAYSIZE ((TemporaryExposureKey_ReportType)(TemporaryExposureKey_ReportType_REVOKED+1))
/* Initializer values for message structs */
#define TemporaryExposureKeyExport_init_default {false, 0, false, 0, {{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define SignatureInfo_init_default {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define TemporaryExposureKey_init_default {{{NULL}, NULL}, false, 0, false, 0, false, 144, false, _TemporaryExposureKey_ReportType_MIN, false, 0}
#define TemporaryExposureKeyExport_init_zero {false, 0, false, 0, {{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define SignatureInfo_init_zero {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
#define TemporaryExposureKey_init_zero {{{NULL}, NULL}, false, 0, false, 0, false, 0, false, _TemporaryExposureKey_ReportType_MIN, false, 0}
/* Field tags (for use in manual encoding/decoding) */
#define SignatureInfo_verification_key_version_tag 3
#define SignatureInfo_verification_key_id_tag 4
#define SignatureInfo_signature_algorithm_tag 5
#define TemporaryExposureKey_key_data_tag 1
#define TemporaryExposureKey_transmission_risk_level_tag 2
#define TemporaryExposureKey_rolling_start_interval_number_tag 3
#define TemporaryExposureKey_rolling_period_tag 4
#define TemporaryExposureKey_report_type_tag 5
#define TemporaryExposureKey_days_since_onset_of_symptoms_tag 6
#define TemporaryExposureKeyExport_start_timestamp_tag 1
#define TemporaryExposureKeyExport_end_timestamp_tag 2
#define TemporaryExposureKeyExport_region_tag 3
#define TemporaryExposureKeyExport_batch_num_tag 4
#define TemporaryExposureKeyExport_batch_size_tag 5
#define TemporaryExposureKeyExport_signature_infos_tag 6
#define TemporaryExposureKeyExport_keys_tag 7
#define TemporaryExposureKeyExport_revised_keys_tag 8
/* Struct field encoding specification for nanopb */
#define TemporaryExposureKeyExport_FIELDLIST(X, a) \
X(a, STATIC, OPTIONAL, FIXED64, start_timestamp, 1) \
X(a, STATIC, OPTIONAL, FIXED64, end_timestamp, 2) \
X(a, CALLBACK, OPTIONAL, STRING, region, 3) \
X(a, STATIC, OPTIONAL, INT32, batch_num, 4) \
X(a, STATIC, OPTIONAL, INT32, batch_size, 5) \
X(a, CALLBACK, REPEATED, MESSAGE, signature_infos, 6) \
X(a, CALLBACK, REPEATED, MESSAGE, keys, 7) \
X(a, CALLBACK, REPEATED, MESSAGE, revised_keys, 8)
#define TemporaryExposureKeyExport_CALLBACK pb_default_field_callback
#define TemporaryExposureKeyExport_DEFAULT NULL
#define TemporaryExposureKeyExport_signature_infos_MSGTYPE SignatureInfo
#define TemporaryExposureKeyExport_keys_MSGTYPE TemporaryExposureKey
#define TemporaryExposureKeyExport_revised_keys_MSGTYPE TemporaryExposureKey
#define SignatureInfo_FIELDLIST(X, a) \
X(a, CALLBACK, OPTIONAL, STRING, verification_key_version, 3) \
X(a, CALLBACK, OPTIONAL, STRING, verification_key_id, 4) \
X(a, CALLBACK, OPTIONAL, STRING, signature_algorithm, 5)
#define SignatureInfo_CALLBACK pb_default_field_callback
#define SignatureInfo_DEFAULT NULL
#define TemporaryExposureKey_FIELDLIST(X, a) \
X(a, CALLBACK, OPTIONAL, BYTES, key_data, 1) \
X(a, STATIC, OPTIONAL, INT32, transmission_risk_level, 2) \
X(a, STATIC, OPTIONAL, INT32, rolling_start_interval_number, 3) \
X(a, STATIC, OPTIONAL, INT32, rolling_period, 4) \
X(a, STATIC, OPTIONAL, UENUM, report_type, 5) \
X(a, STATIC, OPTIONAL, SINT32, days_since_onset_of_symptoms, 6)
#define TemporaryExposureKey_CALLBACK pb_default_field_callback
#define TemporaryExposureKey_DEFAULT (const pb_byte_t*)"\x20\x90\x01\x00"
extern const pb_msgdesc_t TemporaryExposureKeyExport_msg;
extern const pb_msgdesc_t SignatureInfo_msg;
extern const pb_msgdesc_t TemporaryExposureKey_msg;
/* Defines for backwards compatibility with code written before nanopb-0.4.0 */
#define TemporaryExposureKeyExport_fields &TemporaryExposureKeyExport_msg
#define SignatureInfo_fields &SignatureInfo_msg
#define TemporaryExposureKey_fields &TemporaryExposureKey_msg
/* Maximum encoded size of messages (where known) */
/* TemporaryExposureKeyExport_size depends on runtime parameters */
/* SignatureInfo_size depends on runtime parameters */
/* TemporaryExposureKey_size depends on runtime parameters */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

View File

@ -0,0 +1,65 @@
syntax = "proto2";
message TemporaryExposureKeyExport {
// Time window of keys in this batch based on arrival to server, in UTC seconds.
optional fixed64 start_timestamp = 1;
optional fixed64 end_timestamp = 2;
// Region for which these keys came from, such as country.
optional string region = 3;
// For example, file 2 in batch size of 10. Ordinal, 1-based numbering.
// Note: Not yet supported on iOS.
optional int32 batch_num = 4;
optional int32 batch_size = 5;
// Information about associated signatures
repeated SignatureInfo signature_infos = 6;
// The TemporaryExposureKeys for initial release of keys.
// Keys should be included in this list for initial release,
// whereas revised or revoked keys should go in revised_keys.
repeated TemporaryExposureKey keys = 7;
// TemporaryExposureKeys that have changed status.
// Keys should be included in this list if they have changed status
// or have been revoked.
repeated TemporaryExposureKey revised_keys = 8;
}
message SignatureInfo {
// The first two fields have been deprecated
reserved 1, 2;
reserved "app_bundle_id", "android_package";
// Key version for rollovers
// Must be in character class [a-zA-Z0-9_]. For example, 'v1'
optional string verification_key_version = 3;
// Alias with which to identify public key to be used for verification
// Must be in character class [a-zA-Z0-9_.]
// For cross-compatibility with Apple, you can use your region's three-digit
// mobile country code (MCC). If your region has more than one MCC, choose the
// one that Apple has configured.
optional string verification_key_id = 4;
// ASN.1 OID for Algorithm Identifier. For example, `1.2.840.10045.4.3.2'
optional string signature_algorithm = 5;
}
message TemporaryExposureKey {
// Key of infected user
optional bytes key_data = 1;
// Varying risk associated with a key depending on diagnosis method
optional int32 transmission_risk_level = 2 [deprecated = true];
// The interval number since epoch for which a key starts
optional int32 rolling_start_interval_number = 3;
// Increments of 10 minutes describing how long a key is valid
optional int32 rolling_period = 4
[default = 144]; // defaults to 24 hours
// Data type representing why this key was published.
enum ReportType {
UNKNOWN = 0; // Never returned by the client API.
CONFIRMED_TEST = 1;
CONFIRMED_CLINICAL_DIAGNOSIS = 2;
SELF_REPORT = 3;
RECURSIVE = 4; // Reserved for future use.
REVOKED = 5; // Used to revoke a key, never returned by client API.
}
// Type of diagnosis associated with a key.
optional ReportType report_type = 5;
// Number of days elapsed between symptom onset and the TEK being used.
// E.g. 2 means TEK is 2 days after onset of symptoms.
optional sint32 days_since_onset_of_symptoms = 6;
}

868
components/nanopb/pb.h Normal file
View File

@ -0,0 +1,868 @@
/* Common parts of the nanopb library. Most of these are quite low-level
* stuff. For the high-level interface, see pb_encode.h and pb_decode.h.
*/
#ifndef PB_H_INCLUDED
#define PB_H_INCLUDED
/*****************************************************************
* Nanopb compilation time options. You can change these here by *
* uncommenting the lines, or on the compiler command line. *
*****************************************************************/
/* Enable support for dynamically allocated fields */
/* #define PB_ENABLE_MALLOC 1 */
/* Define this if your CPU / compiler combination does not support
* unaligned memory access to packed structures. */
/* #define PB_NO_PACKED_STRUCTS 1 */
/* Increase the number of required fields that are tracked.
* A compiler warning will tell if you need this. */
/* #define PB_MAX_REQUIRED_FIELDS 256 */
/* Add support for tag numbers > 65536 and fields larger than 65536 bytes. */
/* #define PB_FIELD_32BIT 1 */
/* Disable support for error messages in order to save some code space. */
/* #define PB_NO_ERRMSG 1 */
/* Disable support for custom streams (support only memory buffers). */
/* #define PB_BUFFER_ONLY 1 */
/* Disable support for 64-bit datatypes, for compilers without int64_t
or to save some code space. */
/* #define PB_WITHOUT_64BIT 1 */
/* Don't encode scalar arrays as packed. This is only to be used when
* the decoder on the receiving side cannot process packed scalar arrays.
* Such example is older protobuf.js. */
/* #define PB_ENCODE_ARRAYS_UNPACKED 1 */
/* Enable conversion of doubles to floats for platforms that do not
* support 64-bit doubles. Most commonly AVR. */
/* #define PB_CONVERT_DOUBLE_FLOAT 1 */
/* Check whether incoming strings are valid UTF-8 sequences. Slows down
* the string processing slightly and slightly increases code size. */
/* #define PB_VALIDATE_UTF8 1 */
/******************************************************************
* You usually don't need to change anything below this line. *
* Feel free to look around and use the defined macros, though. *
******************************************************************/
/* Version of the nanopb library. Just in case you want to check it in
* your own program. */
#define NANOPB_VERSION nanopb-0.4.2
/* Include all the system headers needed by nanopb. You will need the
* definitions of the following:
* - strlen, memcpy, memset functions
* - [u]int_least8_t, uint_fast8_t, [u]int_least16_t, [u]int32_t, [u]int64_t
* - size_t
* - bool
*
* If you don't have the standard header files, you can instead provide
* a custom header that defines or includes all this. In that case,
* define PB_SYSTEM_HEADER to the path of this file.
*/
#ifdef PB_SYSTEM_HEADER
#include PB_SYSTEM_HEADER
#else
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h>
#include <limits.h>
#ifdef PB_ENABLE_MALLOC
#include <stdlib.h>
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* Macro for defining packed structures (compiler dependent).
* This just reduces memory requirements, but is not required.
*/
#if defined(PB_NO_PACKED_STRUCTS)
/* Disable struct packing */
# define PB_PACKED_STRUCT_START
# define PB_PACKED_STRUCT_END
# define pb_packed
#elif defined(__GNUC__) || defined(__clang__)
/* For GCC and clang */
# define PB_PACKED_STRUCT_START
# define PB_PACKED_STRUCT_END
# define pb_packed __attribute__((packed))
#elif defined(__ICCARM__) || defined(__CC_ARM)
/* For IAR ARM and Keil MDK-ARM compilers */
# define PB_PACKED_STRUCT_START _Pragma("pack(push, 1)")
# define PB_PACKED_STRUCT_END _Pragma("pack(pop)")
# define pb_packed
#elif defined(_MSC_VER) && (_MSC_VER >= 1500)
/* For Microsoft Visual C++ */
# define PB_PACKED_STRUCT_START __pragma(pack(push, 1))
# define PB_PACKED_STRUCT_END __pragma(pack(pop))
# define pb_packed
#else
/* Unknown compiler */
# define PB_PACKED_STRUCT_START
# define PB_PACKED_STRUCT_END
# define pb_packed
#endif
/* Handly macro for suppressing unreferenced-parameter compiler warnings. */
#ifndef PB_UNUSED
#define PB_UNUSED(x) (void)(x)
#endif
/* Harvard-architecture processors may need special attributes for storing
* field information in program memory. */
#ifndef PB_PROGMEM
#ifdef __AVR__
#include <avr/pgmspace.h>
#define PB_PROGMEM PROGMEM
#define PB_PROGMEM_READU32(x) pgm_read_dword(&x)
#else
#define PB_PROGMEM
#define PB_PROGMEM_READU32(x) (x)
#endif
#endif
/* Compile-time assertion, used for checking compatible compilation options.
* If this does not work properly on your compiler, use
* #define PB_NO_STATIC_ASSERT to disable it.
*
* But before doing that, check carefully the error message / place where it
* comes from to see if the error has a real cause. Unfortunately the error
* message is not always very clear to read, but you can see the reason better
* in the place where the PB_STATIC_ASSERT macro was called.
*/
#ifndef PB_NO_STATIC_ASSERT
# ifndef PB_STATIC_ASSERT
# if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
/* C11 standard _Static_assert mechanism */
# define PB_STATIC_ASSERT(COND,MSG) _Static_assert(COND,#MSG);
# else
/* Classic negative-size-array static assert mechanism */
# define PB_STATIC_ASSERT(COND,MSG) typedef char PB_STATIC_ASSERT_MSG(MSG, __LINE__, __COUNTER__)[(COND)?1:-1];
# define PB_STATIC_ASSERT_MSG(MSG, LINE, COUNTER) PB_STATIC_ASSERT_MSG_(MSG, LINE, COUNTER)
# define PB_STATIC_ASSERT_MSG_(MSG, LINE, COUNTER) pb_static_assertion_##MSG##_##LINE##_##COUNTER
# endif
# endif
#else
/* Static asserts disabled by PB_NO_STATIC_ASSERT */
# define PB_STATIC_ASSERT(COND,MSG)
#endif
/* Number of required fields to keep track of. */
#ifndef PB_MAX_REQUIRED_FIELDS
#define PB_MAX_REQUIRED_FIELDS 64
#endif
#if PB_MAX_REQUIRED_FIELDS < 64
#error You should not lower PB_MAX_REQUIRED_FIELDS from the default value (64).
#endif
#ifdef PB_WITHOUT_64BIT
#ifdef PB_CONVERT_DOUBLE_FLOAT
/* Cannot use doubles without 64-bit types */
#undef PB_CONVERT_DOUBLE_FLOAT
#endif
#endif
/* List of possible field types. These are used in the autogenerated code.
* Least-significant 4 bits tell the scalar type
* Most-significant 4 bits specify repeated/required/packed etc.
*/
typedef uint_least8_t pb_type_t;
/**** Field data types ****/
/* Numeric types */
#define PB_LTYPE_BOOL 0x00U /* bool */
#define PB_LTYPE_VARINT 0x01U /* int32, int64, enum, bool */
#define PB_LTYPE_UVARINT 0x02U /* uint32, uint64 */
#define PB_LTYPE_SVARINT 0x03U /* sint32, sint64 */
#define PB_LTYPE_FIXED32 0x04U /* fixed32, sfixed32, float */
#define PB_LTYPE_FIXED64 0x05U /* fixed64, sfixed64, double */
/* Marker for last packable field type. */
#define PB_LTYPE_LAST_PACKABLE 0x05U
/* Byte array with pre-allocated buffer.
* data_size is the length of the allocated PB_BYTES_ARRAY structure. */
#define PB_LTYPE_BYTES 0x06U
/* String with pre-allocated buffer.
* data_size is the maximum length. */
#define PB_LTYPE_STRING 0x07U
/* Submessage
* submsg_fields is pointer to field descriptions */
#define PB_LTYPE_SUBMESSAGE 0x08U
/* Submessage with pre-decoding callback
* The pre-decoding callback is stored as pb_callback_t right before pSize.
* submsg_fields is pointer to field descriptions */
#define PB_LTYPE_SUBMSG_W_CB 0x09U
/* Extension pseudo-field
* The field contains a pointer to pb_extension_t */
#define PB_LTYPE_EXTENSION 0x0AU
/* Byte array with inline, pre-allocated byffer.
* data_size is the length of the inline, allocated buffer.
* This differs from PB_LTYPE_BYTES by defining the element as
* pb_byte_t[data_size] rather than pb_bytes_array_t. */
#define PB_LTYPE_FIXED_LENGTH_BYTES 0x0BU
/* Number of declared LTYPES */
#define PB_LTYPES_COUNT 0x0CU
#define PB_LTYPE_MASK 0x0FU
/**** Field repetition rules ****/
#define PB_HTYPE_REQUIRED 0x00U
#define PB_HTYPE_OPTIONAL 0x10U
#define PB_HTYPE_SINGULAR 0x10U
#define PB_HTYPE_REPEATED 0x20U
#define PB_HTYPE_FIXARRAY 0x20U
#define PB_HTYPE_ONEOF 0x30U
#define PB_HTYPE_MASK 0x30U
/**** Field allocation types ****/
#define PB_ATYPE_STATIC 0x00U
#define PB_ATYPE_POINTER 0x80U
#define PB_ATYPE_CALLBACK 0x40U
#define PB_ATYPE_MASK 0xC0U
#define PB_ATYPE(x) ((x) & PB_ATYPE_MASK)
#define PB_HTYPE(x) ((x) & PB_HTYPE_MASK)
#define PB_LTYPE(x) ((x) & PB_LTYPE_MASK)
#define PB_LTYPE_IS_SUBMSG(x) (PB_LTYPE(x) == PB_LTYPE_SUBMESSAGE || \
PB_LTYPE(x) == PB_LTYPE_SUBMSG_W_CB)
/* Data type used for storing sizes of struct fields
* and array counts.
*/
#if defined(PB_FIELD_32BIT)
typedef uint32_t pb_size_t;
typedef int32_t pb_ssize_t;
#else
typedef uint_least16_t pb_size_t;
typedef int_least16_t pb_ssize_t;
#endif
#define PB_SIZE_MAX ((pb_size_t)-1)
/* Data type for storing encoded data and other byte streams.
* This typedef exists to support platforms where uint8_t does not exist.
* You can regard it as equivalent on uint8_t on other platforms.
*/
typedef uint_least8_t pb_byte_t;
/* Forward declaration of struct types */
typedef struct pb_istream_s pb_istream_t;
typedef struct pb_ostream_s pb_ostream_t;
typedef struct pb_field_iter_s pb_field_iter_t;
/* This structure is used in auto-generated constants
* to specify struct fields.
*/
PB_PACKED_STRUCT_START
typedef struct pb_msgdesc_s pb_msgdesc_t;
struct pb_msgdesc_s {
pb_size_t field_count;
const uint32_t *field_info;
const pb_msgdesc_t * const * submsg_info;
const pb_byte_t *default_value;
bool (*field_callback)(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_iter_t *field);
} pb_packed;
PB_PACKED_STRUCT_END
/* Iterator for message descriptor */
struct pb_field_iter_s {
const pb_msgdesc_t *descriptor; /* Pointer to message descriptor constant */
void *message; /* Pointer to start of the structure */
pb_size_t index; /* Index of the field */
pb_size_t field_info_index; /* Index to descriptor->field_info array */
pb_size_t required_field_index; /* Index that counts only the required fields */
pb_size_t submessage_index; /* Index that counts only submessages */
pb_size_t tag; /* Tag of current field */
pb_size_t data_size; /* sizeof() of a single item */
pb_size_t array_size; /* Number of array entries */
pb_type_t type; /* Type of current field */
void *pField; /* Pointer to current field in struct */
void *pData; /* Pointer to current data contents. Different than pField for arrays and pointers. */
void *pSize; /* Pointer to count/has field */
const pb_msgdesc_t *submsg_desc; /* For submessage fields, pointer to field descriptor for the submessage. */
};
/* For compatibility with legacy code */
typedef pb_field_iter_t pb_field_t;
/* Make sure that the standard integer types are of the expected sizes.
* Otherwise fixed32/fixed64 fields can break.
*
* If you get errors here, it probably means that your stdint.h is not
* correct for your platform.
*/
#ifndef PB_WITHOUT_64BIT
PB_STATIC_ASSERT(sizeof(int64_t) == 2 * sizeof(int32_t), INT64_T_WRONG_SIZE)
PB_STATIC_ASSERT(sizeof(uint64_t) == 2 * sizeof(uint32_t), UINT64_T_WRONG_SIZE)
#endif
/* This structure is used for 'bytes' arrays.
* It has the number of bytes in the beginning, and after that an array.
* Note that actual structs used will have a different length of bytes array.
*/
#define PB_BYTES_ARRAY_T(n) struct { pb_size_t size; pb_byte_t bytes[n]; }
#define PB_BYTES_ARRAY_T_ALLOCSIZE(n) ((size_t)n + offsetof(pb_bytes_array_t, bytes))
struct pb_bytes_array_s {
pb_size_t size;
pb_byte_t bytes[1];
};
typedef struct pb_bytes_array_s pb_bytes_array_t;
/* This structure is used for giving the callback function.
* It is stored in the message structure and filled in by the method that
* calls pb_decode.
*
* The decoding callback will be given a limited-length stream
* If the wire type was string, the length is the length of the string.
* If the wire type was a varint/fixed32/fixed64, the length is the length
* of the actual value.
* The function may be called multiple times (especially for repeated types,
* but also otherwise if the message happens to contain the field multiple
* times.)
*
* The encoding callback will receive the actual output stream.
* It should write all the data in one call, including the field tag and
* wire type. It can write multiple fields.
*
* The callback can be null if you want to skip a field.
*/
typedef struct pb_callback_s pb_callback_t;
struct pb_callback_s {
/* Callback functions receive a pointer to the arg field.
* You can access the value of the field as *arg, and modify it if needed.
*/
union {
bool (*decode)(pb_istream_t *stream, const pb_field_t *field, void **arg);
bool (*encode)(pb_ostream_t *stream, const pb_field_t *field, void * const *arg);
} funcs;
/* Free arg for use by callback */
void *arg;
};
extern bool pb_default_field_callback(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_t *field);
/* Wire types. Library user needs these only in encoder callbacks. */
typedef enum {
PB_WT_VARINT = 0,
PB_WT_64BIT = 1,
PB_WT_STRING = 2,
PB_WT_32BIT = 5
} pb_wire_type_t;
/* Structure for defining the handling of unknown/extension fields.
* Usually the pb_extension_type_t structure is automatically generated,
* while the pb_extension_t structure is created by the user. However,
* if you want to catch all unknown fields, you can also create a custom
* pb_extension_type_t with your own callback.
*/
typedef struct pb_extension_type_s pb_extension_type_t;
typedef struct pb_extension_s pb_extension_t;
struct pb_extension_type_s {
/* Called for each unknown field in the message.
* If you handle the field, read off all of its data and return true.
* If you do not handle the field, do not read anything and return true.
* If you run into an error, return false.
* Set to NULL for default handler.
*/
bool (*decode)(pb_istream_t *stream, pb_extension_t *extension,
uint32_t tag, pb_wire_type_t wire_type);
/* Called once after all regular fields have been encoded.
* If you have something to write, do so and return true.
* If you do not have anything to write, just return true.
* If you run into an error, return false.
* Set to NULL for default handler.
*/
bool (*encode)(pb_ostream_t *stream, const pb_extension_t *extension);
/* Free field for use by the callback. */
const void *arg;
};
struct pb_extension_s {
/* Type describing the extension field. Usually you'll initialize
* this to a pointer to the automatically generated structure. */
const pb_extension_type_t *type;
/* Destination for the decoded data. This must match the datatype
* of the extension field. */
void *dest;
/* Pointer to the next extension handler, or NULL.
* If this extension does not match a field, the next handler is
* automatically called. */
pb_extension_t *next;
/* The decoder sets this to true if the extension was found.
* Ignored for encoding. */
bool found;
};
#define pb_extension_init_zero {NULL,NULL,NULL,false}
/* Memory allocation functions to use. You can define pb_realloc and
* pb_free to custom functions if you want. */
#ifdef PB_ENABLE_MALLOC
# ifndef pb_realloc
# define pb_realloc(ptr, size) realloc(ptr, size)
# endif
# ifndef pb_free
# define pb_free(ptr) free(ptr)
# endif
#endif
/* This is used to inform about need to regenerate .pb.h/.pb.c files. */
#define PB_PROTO_HEADER_VERSION 40
/* These macros are used to declare pb_field_t's in the constant array. */
/* Size of a structure member, in bytes. */
#define pb_membersize(st, m) (sizeof ((st*)0)->m)
/* Number of entries in an array. */
#define pb_arraysize(st, m) (pb_membersize(st, m) / pb_membersize(st, m[0]))
/* Delta from start of one member to the start of another member. */
#define pb_delta(st, m1, m2) ((int)offsetof(st, m1) - (int)offsetof(st, m2))
/* Force expansion of macro value */
#define PB_EXPAND(x) x
/* Binding of a message field set into a specific structure */
#define PB_BIND(msgname, structname, width) \
const uint32_t structname ## _field_info[] PB_PROGMEM = \
{ \
msgname ## _FIELDLIST(PB_GEN_FIELD_INFO_ ## width, structname) \
0 \
}; \
const pb_msgdesc_t* const structname ## _submsg_info[] = \
{ \
msgname ## _FIELDLIST(PB_GEN_SUBMSG_INFO, structname) \
NULL \
}; \
const pb_msgdesc_t structname ## _msg = \
{ \
0 msgname ## _FIELDLIST(PB_GEN_FIELD_COUNT, structname), \
structname ## _field_info, \
structname ## _submsg_info, \
msgname ## _DEFAULT, \
msgname ## _CALLBACK, \
}; \
msgname ## _FIELDLIST(PB_GEN_FIELD_INFO_ASSERT_ ## width, structname)
#define PB_GEN_FIELD_COUNT(structname, atype, htype, ltype, fieldname, tag) +1
/* X-macro for generating the entries in struct_field_info[] array. */
#define PB_GEN_FIELD_INFO_1(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_1(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_2(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_2(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_4(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_4(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_8(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_8(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_AUTO(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_AUTO2(PB_FIELDINFO_WIDTH_AUTO(_PB_ATYPE_ ## atype, _PB_HTYPE_ ## htype, _PB_LTYPE_ ## ltype), \
tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_FIELDINFO_AUTO2(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size)
#define PB_FIELDINFO_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_ ## width(tag, type, data_offset, data_size, size_offset, array_size)
/* X-macro for generating asserts that entries fit in struct_field_info[] array.
* The structure of macros here must match the structure above in PB_GEN_FIELD_INFO_x(),
* but it is not easily reused because of how macro substitutions work. */
#define PB_GEN_FIELD_INFO_ASSERT_1(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_1(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_2(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_2(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_4(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_4(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_8(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_8(tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_GEN_FIELD_INFO_ASSERT_AUTO(structname, atype, htype, ltype, fieldname, tag) \
PB_FIELDINFO_ASSERT_AUTO2(PB_FIELDINFO_WIDTH_AUTO(_PB_ATYPE_ ## atype, _PB_HTYPE_ ## htype, _PB_LTYPE_ ## ltype), \
tag, PB_ATYPE_ ## atype | PB_HTYPE_ ## htype | PB_LTYPE_MAP_ ## ltype, \
PB_DATA_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_DATA_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_SIZE_OFFSET_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname), \
PB_ARRAY_SIZE_ ## atype(_PB_HTYPE_ ## htype, structname, fieldname))
#define PB_FIELDINFO_ASSERT_AUTO2(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_ASSERT_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size)
#define PB_FIELDINFO_ASSERT_AUTO3(width, tag, type, data_offset, data_size, size_offset, array_size) \
PB_FIELDINFO_ASSERT_ ## width(tag, type, data_offset, data_size, size_offset, array_size)
#define PB_DATA_OFFSET_STATIC(htype, structname, fieldname) PB_DO ## htype(structname, fieldname)
#define PB_DATA_OFFSET_POINTER(htype, structname, fieldname) PB_DO ## htype(structname, fieldname)
#define PB_DATA_OFFSET_CALLBACK(htype, structname, fieldname) PB_DO ## htype(structname, fieldname)
#define PB_DO_PB_HTYPE_REQUIRED(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_SINGULAR(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_ONEOF(structname, fieldname) offsetof(structname, PB_ONEOF_NAME(FULL, fieldname))
#define PB_DO_PB_HTYPE_OPTIONAL(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_REPEATED(structname, fieldname) offsetof(structname, fieldname)
#define PB_DO_PB_HTYPE_FIXARRAY(structname, fieldname) offsetof(structname, fieldname)
#define PB_SIZE_OFFSET_STATIC(htype, structname, fieldname) PB_SO ## htype(structname, fieldname)
#define PB_SIZE_OFFSET_POINTER(htype, structname, fieldname) PB_SO_PTR ## htype(structname, fieldname)
#define PB_SIZE_OFFSET_CALLBACK(htype, structname, fieldname) PB_SO_CB ## htype(structname, fieldname)
#define PB_SO_PB_HTYPE_REQUIRED(structname, fieldname) 0
#define PB_SO_PB_HTYPE_SINGULAR(structname, fieldname) 0
#define PB_SO_PB_HTYPE_ONEOF(structname, fieldname) PB_SO_PB_HTYPE_ONEOF2(structname, PB_ONEOF_NAME(FULL, fieldname), PB_ONEOF_NAME(UNION, fieldname))
#define PB_SO_PB_HTYPE_ONEOF2(structname, fullname, unionname) PB_SO_PB_HTYPE_ONEOF3(structname, fullname, unionname)
#define PB_SO_PB_HTYPE_ONEOF3(structname, fullname, unionname) pb_delta(structname, fullname, which_ ## unionname)
#define PB_SO_PB_HTYPE_OPTIONAL(structname, fieldname) pb_delta(structname, fieldname, has_ ## fieldname)
#define PB_SO_PB_HTYPE_REPEATED(structname, fieldname) pb_delta(structname, fieldname, fieldname ## _count)
#define PB_SO_PB_HTYPE_FIXARRAY(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_REQUIRED(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_SINGULAR(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_ONEOF(structname, fieldname) PB_SO_PB_HTYPE_ONEOF(structname, fieldname)
#define PB_SO_PTR_PB_HTYPE_OPTIONAL(structname, fieldname) 0
#define PB_SO_PTR_PB_HTYPE_REPEATED(structname, fieldname) PB_SO_PB_HTYPE_REPEATED(structname, fieldname)
#define PB_SO_PTR_PB_HTYPE_FIXARRAY(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_REQUIRED(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_SINGULAR(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_ONEOF(structname, fieldname) PB_SO_PB_HTYPE_ONEOF(structname, fieldname)
#define PB_SO_CB_PB_HTYPE_OPTIONAL(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_REPEATED(structname, fieldname) 0
#define PB_SO_CB_PB_HTYPE_FIXARRAY(structname, fieldname) 0
#define PB_ARRAY_SIZE_STATIC(htype, structname, fieldname) PB_AS ## htype(structname, fieldname)
#define PB_ARRAY_SIZE_POINTER(htype, structname, fieldname) PB_AS_PTR ## htype(structname, fieldname)
#define PB_ARRAY_SIZE_CALLBACK(htype, structname, fieldname) 1
#define PB_AS_PB_HTYPE_REQUIRED(structname, fieldname) 1
#define PB_AS_PB_HTYPE_SINGULAR(structname, fieldname) 1
#define PB_AS_PB_HTYPE_OPTIONAL(structname, fieldname) 1
#define PB_AS_PB_HTYPE_ONEOF(structname, fieldname) 1
#define PB_AS_PB_HTYPE_REPEATED(structname, fieldname) pb_arraysize(structname, fieldname)
#define PB_AS_PB_HTYPE_FIXARRAY(structname, fieldname) pb_arraysize(structname, fieldname)
#define PB_AS_PTR_PB_HTYPE_REQUIRED(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_SINGULAR(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_OPTIONAL(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_ONEOF(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_REPEATED(structname, fieldname) 1
#define PB_AS_PTR_PB_HTYPE_FIXARRAY(structname, fieldname) pb_arraysize(structname, fieldname[0])
#define PB_DATA_SIZE_STATIC(htype, structname, fieldname) PB_DS ## htype(structname, fieldname)
#define PB_DATA_SIZE_POINTER(htype, structname, fieldname) PB_DS_PTR ## htype(structname, fieldname)
#define PB_DATA_SIZE_CALLBACK(htype, structname, fieldname) PB_DS_CB ## htype(structname, fieldname)
#define PB_DS_PB_HTYPE_REQUIRED(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_PB_HTYPE_SINGULAR(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_PB_HTYPE_OPTIONAL(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_PB_HTYPE_ONEOF(structname, fieldname) pb_membersize(structname, PB_ONEOF_NAME(FULL, fieldname))
#define PB_DS_PB_HTYPE_REPEATED(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PB_HTYPE_FIXARRAY(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_REQUIRED(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_SINGULAR(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_OPTIONAL(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_ONEOF(structname, fieldname) pb_membersize(structname, PB_ONEOF_NAME(FULL, fieldname)[0])
#define PB_DS_PTR_PB_HTYPE_REPEATED(structname, fieldname) pb_membersize(structname, fieldname[0])
#define PB_DS_PTR_PB_HTYPE_FIXARRAY(structname, fieldname) pb_membersize(structname, fieldname[0][0])
#define PB_DS_CB_PB_HTYPE_REQUIRED(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_SINGULAR(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_OPTIONAL(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_ONEOF(structname, fieldname) pb_membersize(structname, PB_ONEOF_NAME(FULL, fieldname))
#define PB_DS_CB_PB_HTYPE_REPEATED(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_DS_CB_PB_HTYPE_FIXARRAY(structname, fieldname) pb_membersize(structname, fieldname)
#define PB_ONEOF_NAME(type, tuple) PB_EXPAND(PB_ONEOF_NAME_ ## type tuple)
#define PB_ONEOF_NAME_UNION(unionname,membername,fullname) unionname
#define PB_ONEOF_NAME_MEMBER(unionname,membername,fullname) membername
#define PB_ONEOF_NAME_FULL(unionname,membername,fullname) fullname
#define PB_GEN_SUBMSG_INFO(structname, atype, htype, ltype, fieldname, tag) \
PB_SUBMSG_INFO_ ## htype(_PB_LTYPE_ ## ltype, structname, fieldname)
#define PB_SUBMSG_INFO_REQUIRED(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_SINGULAR(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_OPTIONAL(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_ONEOF(ltype, structname, fieldname) PB_SUBMSG_INFO_ONEOF2(ltype, structname, PB_ONEOF_NAME(UNION, fieldname), PB_ONEOF_NAME(MEMBER, fieldname))
#define PB_SUBMSG_INFO_ONEOF2(ltype, structname, unionname, membername) PB_SUBMSG_INFO_ONEOF3(ltype, structname, unionname, membername)
#define PB_SUBMSG_INFO_ONEOF3(ltype, structname, unionname, membername) PB_SI ## ltype(structname ## _ ## unionname ## _ ## membername ## _MSGTYPE)
#define PB_SUBMSG_INFO_REPEATED(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SUBMSG_INFO_FIXARRAY(ltype, structname, fieldname) PB_SI ## ltype(structname ## _ ## fieldname ## _MSGTYPE)
#define PB_SI_PB_LTYPE_BOOL(t)
#define PB_SI_PB_LTYPE_BYTES(t)
#define PB_SI_PB_LTYPE_DOUBLE(t)
#define PB_SI_PB_LTYPE_ENUM(t)
#define PB_SI_PB_LTYPE_UENUM(t)
#define PB_SI_PB_LTYPE_FIXED32(t)
#define PB_SI_PB_LTYPE_FIXED64(t)
#define PB_SI_PB_LTYPE_FLOAT(t)
#define PB_SI_PB_LTYPE_INT32(t)
#define PB_SI_PB_LTYPE_INT64(t)
#define PB_SI_PB_LTYPE_MESSAGE(t) PB_SUBMSG_DESCRIPTOR(t)
#define PB_SI_PB_LTYPE_MSG_W_CB(t) PB_SUBMSG_DESCRIPTOR(t)
#define PB_SI_PB_LTYPE_SFIXED32(t)
#define PB_SI_PB_LTYPE_SFIXED64(t)
#define PB_SI_PB_LTYPE_SINT32(t)
#define PB_SI_PB_LTYPE_SINT64(t)
#define PB_SI_PB_LTYPE_STRING(t)
#define PB_SI_PB_LTYPE_UINT32(t)
#define PB_SI_PB_LTYPE_UINT64(t)
#define PB_SI_PB_LTYPE_EXTENSION(t)
#define PB_SI_PB_LTYPE_FIXED_LENGTH_BYTES(t)
#define PB_SUBMSG_DESCRIPTOR(t) &(t ## _msg),
/* The field descriptors use a variable width format, with width of either
* 1, 2, 4 or 8 of 32-bit words. The two lowest bytes of the first byte always
* encode the descriptor size, 6 lowest bits of field tag number, and 8 bits
* of the field type.
*
* Descriptor size is encoded as 0 = 1 word, 1 = 2 words, 2 = 4 words, 3 = 8 words.
*
* Formats, listed starting with the least significant bit of the first word.
* 1 word: [2-bit len] [6-bit tag] [8-bit type] [8-bit data_offset] [4-bit size_offset] [4-bit data_size]
*
* 2 words: [2-bit len] [6-bit tag] [8-bit type] [12-bit array_size] [4-bit size_offset]
* [16-bit data_offset] [12-bit data_size] [4-bit tag>>6]
*
* 4 words: [2-bit len] [6-bit tag] [8-bit type] [16-bit array_size]
* [8-bit size_offset] [24-bit tag>>6]
* [32-bit data_offset]
* [32-bit data_size]
*
* 8 words: [2-bit len] [6-bit tag] [8-bit type] [16-bit reserved]
* [8-bit size_offset] [24-bit tag>>6]
* [32-bit data_offset]
* [32-bit data_size]
* [32-bit array_size]
* [32-bit reserved]
* [32-bit reserved]
* [32-bit reserved]
*/
#define PB_FIELDINFO_1(tag, type, data_offset, data_size, size_offset, array_size) \
(0 | (((tag) << 2) & 0xFF) | ((type) << 8) | (((uint32_t)(data_offset) & 0xFF) << 16) | \
(((uint32_t)(size_offset) & 0x0F) << 24) | (((uint32_t)(data_size) & 0x0F) << 28)),
#define PB_FIELDINFO_2(tag, type, data_offset, data_size, size_offset, array_size) \
(1 | (((tag) << 2) & 0xFF) | ((type) << 8) | (((uint32_t)(array_size) & 0xFFF) << 16) | (((uint32_t)(size_offset) & 0x0F) << 28)), \
(((uint32_t)(data_offset) & 0xFFFF) | (((uint32_t)(data_size) & 0xFFF) << 16) | (((uint32_t)(tag) & 0x3c0) << 22)),
#define PB_FIELDINFO_4(tag, type, data_offset, data_size, size_offset, array_size) \
(2 | (((tag) << 2) & 0xFF) | ((type) << 8) | (((uint32_t)(array_size) & 0xFFFF) << 16)), \
((uint32_t)(int_least8_t)(size_offset) | (((uint32_t)(tag) << 2) & 0xFFFFFF00)), \
(data_offset), (data_size),
#define PB_FIELDINFO_8(tag, type, data_offset, data_size, size_offset, array_size) \
(3 | (((tag) << 2) & 0xFF) | ((type) << 8)), \
((uint32_t)(int_least8_t)(size_offset) | (((uint32_t)(tag) << 2) & 0xFFFFFF00)), \
(data_offset), (data_size), (array_size), 0, 0, 0,
/* These assertions verify that the field information fits in the allocated space.
* The generator tries to automatically determine the correct width that can fit all
* data associated with a message. These asserts will fail only if there has been a
* problem in the automatic logic - this may be worth reporting as a bug. As a workaround,
* you can increase the descriptor width by defining PB_FIELDINFO_WIDTH or by setting
* descriptorsize option in .options file.
*/
#define PB_FITS(value,bits) ((uint32_t)(value) < ((uint32_t)1<<bits))
#define PB_FIELDINFO_ASSERT_1(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,6) && PB_FITS(data_offset,8) && PB_FITS(size_offset,4) && PB_FITS(data_size,4) && PB_FITS(array_size,1), FIELDINFO_DOES_NOT_FIT_width1_field ## tag)
#define PB_FIELDINFO_ASSERT_2(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,10) && PB_FITS(data_offset,16) && PB_FITS(size_offset,4) && PB_FITS(data_size,12) && PB_FITS(array_size,12), FIELDINFO_DOES_NOT_FIT_width2_field ## tag)
#ifndef PB_FIELD_32BIT
/* Maximum field sizes are still 16-bit if pb_size_t is 16-bit */
#define PB_FIELDINFO_ASSERT_4(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,16) && PB_FITS(data_offset,16) && PB_FITS((int_least8_t)size_offset,8) && PB_FITS(data_size,16) && PB_FITS(array_size,16), FIELDINFO_DOES_NOT_FIT_width4_field ## tag)
#define PB_FIELDINFO_ASSERT_8(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,16) && PB_FITS(data_offset,16) && PB_FITS((int_least8_t)size_offset,8) && PB_FITS(data_size,16) && PB_FITS(array_size,16), FIELDINFO_DOES_NOT_FIT_width8_field ## tag)
#else
/* Up to 32-bit fields supported.
* Note that the checks are against 31 bits to avoid compiler warnings about shift wider than type in the test.
* I expect that there is no reasonable use for >2GB messages with nanopb anyway.
*/
#define PB_FIELDINFO_ASSERT_4(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,30) && PB_FITS(data_offset,31) && PB_FITS(size_offset,8) && PB_FITS(data_size,31) && PB_FITS(array_size,16), FIELDINFO_DOES_NOT_FIT_width4_field ## tag)
#define PB_FIELDINFO_ASSERT_8(tag, type, data_offset, data_size, size_offset, array_size) \
PB_STATIC_ASSERT(PB_FITS(tag,30) && PB_FITS(data_offset,31) && PB_FITS(size_offset,8) && PB_FITS(data_size,31) && PB_FITS(array_size,31), FIELDINFO_DOES_NOT_FIT_width8_field ## tag)
#endif
/* Automatic picking of FIELDINFO width:
* Uses width 1 when possible, otherwise resorts to width 2.
* This is used when PB_BIND() is called with "AUTO" as the argument.
* The generator will give explicit size argument when it knows that a message
* structure grows beyond 1-word format limits.
*/
#define PB_FIELDINFO_WIDTH_AUTO(atype, htype, ltype) PB_FI_WIDTH ## atype(htype, ltype)
#define PB_FI_WIDTH_PB_ATYPE_STATIC(htype, ltype) PB_FI_WIDTH ## htype(ltype)
#define PB_FI_WIDTH_PB_ATYPE_POINTER(htype, ltype) PB_FI_WIDTH ## htype(ltype)
#define PB_FI_WIDTH_PB_ATYPE_CALLBACK(htype, ltype) 2
#define PB_FI_WIDTH_PB_HTYPE_REQUIRED(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_SINGULAR(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_OPTIONAL(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_ONEOF(ltype) PB_FI_WIDTH ## ltype
#define PB_FI_WIDTH_PB_HTYPE_REPEATED(ltype) 2
#define PB_FI_WIDTH_PB_HTYPE_FIXARRAY(ltype) 2
#define PB_FI_WIDTH_PB_LTYPE_BOOL 1
#define PB_FI_WIDTH_PB_LTYPE_BYTES 2
#define PB_FI_WIDTH_PB_LTYPE_DOUBLE 1
#define PB_FI_WIDTH_PB_LTYPE_ENUM 1
#define PB_FI_WIDTH_PB_LTYPE_UENUM 1
#define PB_FI_WIDTH_PB_LTYPE_FIXED32 1
#define PB_FI_WIDTH_PB_LTYPE_FIXED64 1
#define PB_FI_WIDTH_PB_LTYPE_FLOAT 1
#define PB_FI_WIDTH_PB_LTYPE_INT32 1
#define PB_FI_WIDTH_PB_LTYPE_INT64 1
#define PB_FI_WIDTH_PB_LTYPE_MESSAGE 2
#define PB_FI_WIDTH_PB_LTYPE_MSG_W_CB 2
#define PB_FI_WIDTH_PB_LTYPE_SFIXED32 1
#define PB_FI_WIDTH_PB_LTYPE_SFIXED64 1
#define PB_FI_WIDTH_PB_LTYPE_SINT32 1
#define PB_FI_WIDTH_PB_LTYPE_SINT64 1
#define PB_FI_WIDTH_PB_LTYPE_STRING 2
#define PB_FI_WIDTH_PB_LTYPE_UINT32 1
#define PB_FI_WIDTH_PB_LTYPE_UINT64 1
#define PB_FI_WIDTH_PB_LTYPE_EXTENSION 1
#define PB_FI_WIDTH_PB_LTYPE_FIXED_LENGTH_BYTES 2
/* The mapping from protobuf types to LTYPEs is done using these macros. */
#define PB_LTYPE_MAP_BOOL PB_LTYPE_BOOL
#define PB_LTYPE_MAP_BYTES PB_LTYPE_BYTES
#define PB_LTYPE_MAP_DOUBLE PB_LTYPE_FIXED64
#define PB_LTYPE_MAP_ENUM PB_LTYPE_VARINT
#define PB_LTYPE_MAP_UENUM PB_LTYPE_UVARINT
#define PB_LTYPE_MAP_FIXED32 PB_LTYPE_FIXED32
#define PB_LTYPE_MAP_FIXED64 PB_LTYPE_FIXED64
#define PB_LTYPE_MAP_FLOAT PB_LTYPE_FIXED32
#define PB_LTYPE_MAP_INT32 PB_LTYPE_VARINT
#define PB_LTYPE_MAP_INT64 PB_LTYPE_VARINT
#define PB_LTYPE_MAP_MESSAGE PB_LTYPE_SUBMESSAGE
#define PB_LTYPE_MAP_MSG_W_CB PB_LTYPE_SUBMSG_W_CB
#define PB_LTYPE_MAP_SFIXED32 PB_LTYPE_FIXED32
#define PB_LTYPE_MAP_SFIXED64 PB_LTYPE_FIXED64
#define PB_LTYPE_MAP_SINT32 PB_LTYPE_SVARINT
#define PB_LTYPE_MAP_SINT64 PB_LTYPE_SVARINT
#define PB_LTYPE_MAP_STRING PB_LTYPE_STRING
#define PB_LTYPE_MAP_UINT32 PB_LTYPE_UVARINT
#define PB_LTYPE_MAP_UINT64 PB_LTYPE_UVARINT
#define PB_LTYPE_MAP_EXTENSION PB_LTYPE_EXTENSION
#define PB_LTYPE_MAP_FIXED_LENGTH_BYTES PB_LTYPE_FIXED_LENGTH_BYTES
/* These macros are used for giving out error messages.
* They are mostly a debugging aid; the main error information
* is the true/false return value from functions.
* Some code space can be saved by disabling the error
* messages if not used.
*
* PB_SET_ERROR() sets the error message if none has been set yet.
* msg must be a constant string literal.
* PB_GET_ERROR() always returns a pointer to a string.
* PB_RETURN_ERROR() sets the error and returns false from current
* function.
*/
#ifdef PB_NO_ERRMSG
#define PB_SET_ERROR(stream, msg) PB_UNUSED(stream)
#define PB_GET_ERROR(stream) "(errmsg disabled)"
#else
#define PB_SET_ERROR(stream, msg) (stream->errmsg = (stream)->errmsg ? (stream)->errmsg : (msg))
#define PB_GET_ERROR(stream) ((stream)->errmsg ? (stream)->errmsg : "(none)")
#endif
#define PB_RETURN_ERROR(stream, msg) return PB_SET_ERROR(stream, msg), false
#ifdef __cplusplus
} /* extern "C" */
#endif
#ifdef __cplusplus
#if __cplusplus >= 201103L
#define PB_CONSTEXPR constexpr
#else // __cplusplus >= 201103L
#define PB_CONSTEXPR
#endif // __cplusplus >= 201103L
#if __cplusplus >= 201703L
#define PB_INLINE_CONSTEXPR inline constexpr
#else // __cplusplus >= 201703L
#define PB_INLINE_CONSTEXPR PB_CONSTEXPR
#endif // __cplusplus >= 201703L
namespace nanopb {
// Each type will be partially specialized by the generator.
template <typename GenMessageT> struct MessageDescriptor;
} // namespace nanopb
#endif /* __cplusplus */
#endif

View File

@ -0,0 +1,345 @@
/* pb_common.c: Common support functions for pb_encode.c and pb_decode.c.
*
* 2014 Petteri Aimonen <jpa@kapsi.fi>
*/
#include "pb_common.h"
static bool load_descriptor_values(pb_field_iter_t *iter)
{
uint32_t word0;
uint32_t data_offset;
uint_least8_t format;
int_least8_t size_offset;
if (iter->index >= iter->descriptor->field_count)
return false;
word0 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);
format = word0 & 3;
iter->tag = (pb_size_t)((word0 >> 2) & 0x3F);
iter->type = (pb_type_t)((word0 >> 8) & 0xFF);
if (format == 0)
{
/* 1-word format */
iter->array_size = 1;
size_offset = (int_least8_t)((word0 >> 24) & 0x0F);
data_offset = (word0 >> 16) & 0xFF;
iter->data_size = (pb_size_t)((word0 >> 28) & 0x0F);
}
else if (format == 1)
{
/* 2-word format */
uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);
iter->array_size = (pb_size_t)((word0 >> 16) & 0x0FFF);
iter->tag = (pb_size_t)(iter->tag | ((word1 >> 28) << 6));
size_offset = (int_least8_t)((word0 >> 28) & 0x0F);
data_offset = word1 & 0xFFFF;
iter->data_size = (pb_size_t)((word1 >> 16) & 0x0FFF);
}
else if (format == 2)
{
/* 4-word format */
uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);
uint32_t word2 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 2]);
uint32_t word3 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 3]);
iter->array_size = (pb_size_t)(word0 >> 16);
iter->tag = (pb_size_t)(iter->tag | ((word1 >> 8) << 6));
size_offset = (int_least8_t)(word1 & 0xFF);
data_offset = word2;
iter->data_size = (pb_size_t)word3;
}
else
{
/* 8-word format */
uint32_t word1 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 1]);
uint32_t word2 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 2]);
uint32_t word3 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 3]);
uint32_t word4 = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index + 4]);
iter->array_size = (pb_size_t)word4;
iter->tag = (pb_size_t)(iter->tag | ((word1 >> 8) << 6));
size_offset = (int_least8_t)(word1 & 0xFF);
data_offset = word2;
iter->data_size = (pb_size_t)word3;
}
if (!iter->message)
{
/* Avoid doing arithmetic on null pointers, it is undefined */
iter->pField = NULL;
iter->pSize = NULL;
}
else
{
iter->pField = (char*)iter->message + data_offset;
if (size_offset)
{
iter->pSize = (char*)iter->pField - size_offset;
}
else if (PB_HTYPE(iter->type) == PB_HTYPE_REPEATED &&
(PB_ATYPE(iter->type) == PB_ATYPE_STATIC ||
PB_ATYPE(iter->type) == PB_ATYPE_POINTER))
{
/* Fixed count array */
iter->pSize = &iter->array_size;
}
else
{
iter->pSize = NULL;
}
if (PB_ATYPE(iter->type) == PB_ATYPE_POINTER && iter->pField != NULL)
{
iter->pData = *(void**)iter->pField;
}
else
{
iter->pData = iter->pField;
}
}
if (PB_LTYPE_IS_SUBMSG(iter->type))
{
iter->submsg_desc = iter->descriptor->submsg_info[iter->submessage_index];
}
else
{
iter->submsg_desc = NULL;
}
return true;
}
static void advance_iterator(pb_field_iter_t *iter)
{
iter->index++;
if (iter->index >= iter->descriptor->field_count)
{
/* Restart */
iter->index = 0;
iter->field_info_index = 0;
iter->submessage_index = 0;
iter->required_field_index = 0;
}
else
{
/* Increment indexes based on previous field type.
* All field info formats have the following fields:
* - lowest 2 bits tell the amount of words in the descriptor (2^n words)
* - bits 2..7 give the lowest bits of tag number.
* - bits 8..15 give the field type.
*/
uint32_t prev_descriptor = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);
pb_type_t prev_type = (prev_descriptor >> 8) & 0xFF;
pb_size_t descriptor_len = (pb_size_t)(1 << (prev_descriptor & 3));
iter->field_info_index = (pb_size_t)(iter->field_info_index + descriptor_len);
if (PB_HTYPE(prev_type) == PB_HTYPE_REQUIRED)
{
iter->required_field_index++;
}
if (PB_LTYPE_IS_SUBMSG(prev_type))
{
iter->submessage_index++;
}
}
}
bool pb_field_iter_begin(pb_field_iter_t *iter, const pb_msgdesc_t *desc, void *message)
{
memset(iter, 0, sizeof(*iter));
iter->descriptor = desc;
iter->message = message;
return load_descriptor_values(iter);
}
bool pb_field_iter_begin_extension(pb_field_iter_t *iter, pb_extension_t *extension)
{
const pb_msgdesc_t *msg = (const pb_msgdesc_t*)extension->type->arg;
bool status;
uint32_t word0 = PB_PROGMEM_READU32(msg->field_info[0]);
if (PB_ATYPE(word0 >> 8) == PB_ATYPE_POINTER)
{
/* For pointer extensions, the pointer is stored directly
* in the extension structure. This avoids having an extra
* indirection. */
status = pb_field_iter_begin(iter, msg, &extension->dest);
}
else
{
status = pb_field_iter_begin(iter, msg, extension->dest);
}
iter->pSize = &extension->found;
return status;
}
bool pb_field_iter_next(pb_field_iter_t *iter)
{
advance_iterator(iter);
(void)load_descriptor_values(iter);
return iter->index != 0;
}
bool pb_field_iter_find(pb_field_iter_t *iter, uint32_t tag)
{
if (iter->tag == tag)
{
return true; /* Nothing to do, correct field already. */
}
else
{
pb_size_t start = iter->index;
uint32_t fieldinfo;
do
{
/* Advance iterator but don't load values yet */
advance_iterator(iter);
/* Do fast check for tag number match */
fieldinfo = PB_PROGMEM_READU32(iter->descriptor->field_info[iter->field_info_index]);
if (((fieldinfo >> 2) & 0x3F) == (tag & 0x3F))
{
/* Good candidate, check further */
(void)load_descriptor_values(iter);
if (iter->tag == tag &&
PB_LTYPE(iter->type) != PB_LTYPE_EXTENSION)
{
/* Found it */
return true;
}
}
} while (iter->index != start);
/* Searched all the way back to start, and found nothing. */
(void)load_descriptor_values(iter);
return false;
}
}
static void *pb_const_cast(const void *p)
{
/* Note: this casts away const, in order to use the common field iterator
* logic for both encoding and decoding. The cast is done using union
* to avoid spurious compiler warnings. */
union {
void *p1;
const void *p2;
} t;
t.p2 = p;
return t.p1;
}
bool pb_field_iter_begin_const(pb_field_iter_t *iter, const pb_msgdesc_t *desc, const void *message)
{
return pb_field_iter_begin(iter, desc, pb_const_cast(message));
}
bool pb_field_iter_begin_extension_const(pb_field_iter_t *iter, const pb_extension_t *extension)
{
return pb_field_iter_begin_extension(iter, (pb_extension_t*)pb_const_cast(extension));
}
bool pb_default_field_callback(pb_istream_t *istream, pb_ostream_t *ostream, const pb_field_t *field)
{
if (field->data_size == sizeof(pb_callback_t))
{
pb_callback_t *pCallback = (pb_callback_t*)field->pData;
if (pCallback != NULL)
{
if (istream != NULL && pCallback->funcs.decode != NULL)
{
return pCallback->funcs.decode(istream, field, &pCallback->arg);
}
if (ostream != NULL && pCallback->funcs.encode != NULL)
{
return pCallback->funcs.encode(ostream, field, &pCallback->arg);
}
}
}
return true; /* Success, but didn't do anything */
}
#ifdef PB_VALIDATE_UTF8
/* This function checks whether a string is valid UTF-8 text.
*
* Algorithm is adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c
* Original copyright: Markus Kuhn <http://www.cl.cam.ac.uk/~mgk25/> 2005-03-30
* Licensed under "Short code license", which allows use under MIT license or
* any compatible with it.
*/
bool pb_validate_utf8(const char *str)
{
const pb_byte_t *s = (const pb_byte_t*)str;
while (*s)
{
if (*s < 0x80)
{
/* 0xxxxxxx */
s++;
}
else if ((s[0] & 0xe0) == 0xc0)
{
/* 110XXXXx 10xxxxxx */
if ((s[1] & 0xc0) != 0x80 ||
(s[0] & 0xfe) == 0xc0) /* overlong? */
return false;
else
s += 2;
}
else if ((s[0] & 0xf0) == 0xe0)
{
/* 1110XXXX 10Xxxxxx 10xxxxxx */
if ((s[1] & 0xc0) != 0x80 ||
(s[2] & 0xc0) != 0x80 ||
(s[0] == 0xe0 && (s[1] & 0xe0) == 0x80) || /* overlong? */
(s[0] == 0xed && (s[1] & 0xe0) == 0xa0) || /* surrogate? */
(s[0] == 0xef && s[1] == 0xbf &&
(s[2] & 0xfe) == 0xbe)) /* U+FFFE or U+FFFF? */
return false;
else
s += 3;
}
else if ((s[0] & 0xf8) == 0xf0)
{
/* 11110XXX 10XXxxxx 10xxxxxx 10xxxxxx */
if ((s[1] & 0xc0) != 0x80 ||
(s[2] & 0xc0) != 0x80 ||
(s[3] & 0xc0) != 0x80 ||
(s[0] == 0xf0 && (s[1] & 0xf0) == 0x80) || /* overlong? */
(s[0] == 0xf4 && s[1] > 0x8f) || s[0] > 0xf4) /* > U+10FFFF? */
return false;
else
s += 4;
}
else
{
return false;
}
}
return true;
}
#endif

View File

@ -0,0 +1,45 @@
/* pb_common.h: Common support functions for pb_encode.c and pb_decode.c.
* These functions are rarely needed by applications directly.
*/
#ifndef PB_COMMON_H_INCLUDED
#define PB_COMMON_H_INCLUDED
#include "pb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Initialize the field iterator structure to beginning.
* Returns false if the message type is empty. */
bool pb_field_iter_begin(pb_field_iter_t *iter, const pb_msgdesc_t *desc, void *message);
/* Get a field iterator for extension field. */
bool pb_field_iter_begin_extension(pb_field_iter_t *iter, pb_extension_t *extension);
/* Same as pb_field_iter_begin(), but for const message pointer.
* Note that the pointers in pb_field_iter_t will be non-const but shouldn't
* be written to when using these functions. */
bool pb_field_iter_begin_const(pb_field_iter_t *iter, const pb_msgdesc_t *desc, const void *message);
bool pb_field_iter_begin_extension_const(pb_field_iter_t *iter, const pb_extension_t *extension);
/* Advance the iterator to the next field.
* Returns false when the iterator wraps back to the first field. */
bool pb_field_iter_next(pb_field_iter_t *iter);
/* Advance the iterator until it points at a field with the given tag.
* Returns false if no such field exists. */
bool pb_field_iter_find(pb_field_iter_t *iter, uint32_t tag);
#ifdef PB_VALIDATE_UTF8
/* Validate UTF-8 text string */
bool pb_validate_utf8(const char *s);
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,196 @@
/* pb_decode.h: Functions to decode protocol buffers. Depends on pb_decode.c.
* The main function is pb_decode. You also need an input stream, and the
* field descriptions created by nanopb_generator.py.
*/
#ifndef PB_DECODE_H_INCLUDED
#define PB_DECODE_H_INCLUDED
#include "pb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Structure for defining custom input streams. You will need to provide
* a callback function to read the bytes from your storage, which can be
* for example a file or a network socket.
*
* The callback must conform to these rules:
*
* 1) Return false on IO errors. This will cause decoding to abort.
* 2) You can use state to store your own data (e.g. buffer pointer),
* and rely on pb_read to verify that no-body reads past bytes_left.
* 3) Your callback may be used with substreams, in which case bytes_left
* is different than from the main stream. Don't use bytes_left to compute
* any pointers.
*/
struct pb_istream_s
{
#ifdef PB_BUFFER_ONLY
/* Callback pointer is not used in buffer-only configuration.
* Having an int pointer here allows binary compatibility but
* gives an error if someone tries to assign callback function.
*/
int *callback;
#else
bool (*callback)(pb_istream_t *stream, pb_byte_t *buf, size_t count);
#endif
void *state; /* Free field for use by callback implementation */
size_t bytes_left;
#ifndef PB_NO_ERRMSG
const char *errmsg;
#endif
};
#ifndef PB_NO_ERRMSG
#define PB_ISTREAM_EMPTY {0,0,0,0}
#else
#define PB_ISTREAM_EMPTY {0,0,0}
#endif
/***************************
* Main decoding functions *
***************************/
/* Decode a single protocol buffers message from input stream into a C structure.
* Returns true on success, false on any failure.
* The actual struct pointed to by dest must match the description in fields.
* Callback fields of the destination structure must be initialized by caller.
* All other fields will be initialized by this function.
*
* Example usage:
* MyMessage msg = {};
* uint8_t buffer[64];
* pb_istream_t stream;
*
* // ... read some data into buffer ...
*
* stream = pb_istream_from_buffer(buffer, count);
* pb_decode(&stream, MyMessage_fields, &msg);
*/
bool pb_decode(pb_istream_t *stream, const pb_msgdesc_t *fields, void *dest_struct);
/* Extended version of pb_decode, with several options to control
* the decoding process:
*
* PB_DECODE_NOINIT: Do not initialize the fields to default values.
* This is slightly faster if you do not need the default
* values and instead initialize the structure to 0 using
* e.g. memset(). This can also be used for merging two
* messages, i.e. combine already existing data with new
* values.
*
* PB_DECODE_DELIMITED: Input message starts with the message size as varint.
* Corresponds to parseDelimitedFrom() in Google's
* protobuf API.
*
* PB_DECODE_NULLTERMINATED: Stop reading when field tag is read as 0. This allows
* reading null terminated messages.
* NOTE: Until nanopb-0.4.0, pb_decode() also allows
* null-termination. This behaviour is not supported in
* most other protobuf implementations, so PB_DECODE_DELIMITED
* is a better option for compatibility.
*
* Multiple flags can be combined with bitwise or (| operator)
*/
#define PB_DECODE_NOINIT 0x01U
#define PB_DECODE_DELIMITED 0x02U
#define PB_DECODE_NULLTERMINATED 0x04U
bool pb_decode_ex(pb_istream_t *stream, const pb_msgdesc_t *fields, void *dest_struct, unsigned int flags);
/* Defines for backwards compatibility with code written before nanopb-0.4.0 */
#define pb_decode_noinit(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_NOINIT)
#define pb_decode_delimited(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_DELIMITED)
#define pb_decode_delimited_noinit(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_DELIMITED | PB_DECODE_NOINIT)
#define pb_decode_nullterminated(s,f,d) pb_decode_ex(s,f,d, PB_DECODE_NULLTERMINATED)
#ifdef PB_ENABLE_MALLOC
/* Release any allocated pointer fields. If you use dynamic allocation, you should
* call this for any successfully decoded message when you are done with it. If
* pb_decode() returns with an error, the message is already released.
*/
void pb_release(const pb_msgdesc_t *fields, void *dest_struct);
#endif
/**************************************
* Functions for manipulating streams *
**************************************/
/* Create an input stream for reading from a memory buffer.
*
* msglen should be the actual length of the message, not the full size of
* allocated buffer.
*
* Alternatively, you can use a custom stream that reads directly from e.g.
* a file or a network socket.
*/
pb_istream_t pb_istream_from_buffer(const pb_byte_t *buf, size_t msglen);
/* Function to read from a pb_istream_t. You can use this if you need to
* read some custom header data, or to read data in field callbacks.
*/
bool pb_read(pb_istream_t *stream, pb_byte_t *buf, size_t count);
/************************************************
* Helper functions for writing field callbacks *
************************************************/
/* Decode the tag for the next field in the stream. Gives the wire type and
* field tag. At end of the message, returns false and sets eof to true. */
bool pb_decode_tag(pb_istream_t *stream, pb_wire_type_t *wire_type, uint32_t *tag, bool *eof);
/* Skip the field payload data, given the wire type. */
bool pb_skip_field(pb_istream_t *stream, pb_wire_type_t wire_type);
/* Decode an integer in the varint format. This works for enum, int32,
* int64, uint32 and uint64 field types. */
#ifndef PB_WITHOUT_64BIT
bool pb_decode_varint(pb_istream_t *stream, uint64_t *dest);
#else
#define pb_decode_varint pb_decode_varint32
#endif
/* Decode an integer in the varint format. This works for enum, int32,
* and uint32 field types. */
bool pb_decode_varint32(pb_istream_t *stream, uint32_t *dest);
/* Decode a bool value in varint format. */
bool pb_decode_bool(pb_istream_t *stream, bool *dest);
/* Decode an integer in the zig-zagged svarint format. This works for sint32
* and sint64. */
#ifndef PB_WITHOUT_64BIT
bool pb_decode_svarint(pb_istream_t *stream, int64_t *dest);
#else
bool pb_decode_svarint(pb_istream_t *stream, int32_t *dest);
#endif
/* Decode a fixed32, sfixed32 or float value. You need to pass a pointer to
* a 4-byte wide C variable. */
bool pb_decode_fixed32(pb_istream_t *stream, void *dest);
#ifndef PB_WITHOUT_64BIT
/* Decode a fixed64, sfixed64 or double value. You need to pass a pointer to
* a 8-byte wide C variable. */
bool pb_decode_fixed64(pb_istream_t *stream, void *dest);
#endif
#ifdef PB_CONVERT_DOUBLE_FLOAT
/* Decode a double value into float variable. */
bool pb_decode_double_as_float(pb_istream_t *stream, float *dest);
#endif
/* Make a limited-length substream for reading a PB_WT_STRING field. */
bool pb_make_string_substream(pb_istream_t *stream, pb_istream_t *substream);
bool pb_close_string_substream(pb_istream_t *stream, pb_istream_t *substream);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

View File

@ -0,0 +1,978 @@
/* pb_encode.c -- encode a protobuf using minimal resources
*
* 2011 Petteri Aimonen <jpa@kapsi.fi>
*/
#include "pb.h"
#include "pb_encode.h"
#include "pb_common.h"
/* Use the GCC warn_unused_result attribute to check that all return values
* are propagated correctly. On other compilers and gcc before 3.4.0 just
* ignore the annotation.
*/
#if !defined(__GNUC__) || ( __GNUC__ < 3) || (__GNUC__ == 3 && __GNUC_MINOR__ < 4)
#define checkreturn
#else
#define checkreturn __attribute__((warn_unused_result))
#endif
/**************************************
* Declarations internal to this file *
**************************************/
static bool checkreturn buf_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count);
static bool checkreturn encode_array(pb_ostream_t *stream, pb_field_iter_t *field);
static bool checkreturn pb_check_proto3_default_value(const pb_field_iter_t *field);
static bool checkreturn encode_basic_field(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn encode_callback_field(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn encode_field(pb_ostream_t *stream, pb_field_iter_t *field);
static bool checkreturn encode_extension_field(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn default_extension_encoder(pb_ostream_t *stream, const pb_extension_t *extension);
static bool checkreturn pb_encode_varint_32(pb_ostream_t *stream, uint32_t low, uint32_t high);
static bool checkreturn pb_enc_bool(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_varint(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_fixed(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_bytes(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_string(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_submessage(pb_ostream_t *stream, const pb_field_iter_t *field);
static bool checkreturn pb_enc_fixed_length_bytes(pb_ostream_t *stream, const pb_field_iter_t *field);
#ifdef PB_WITHOUT_64BIT
#define pb_int64_t int32_t
#define pb_uint64_t uint32_t
#else
#define pb_int64_t int64_t
#define pb_uint64_t uint64_t
#endif
/*******************************
* pb_ostream_t implementation *
*******************************/
static bool checkreturn buf_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
size_t i;
pb_byte_t *dest = (pb_byte_t*)stream->state;
stream->state = dest + count;
for (i = 0; i < count; i++)
dest[i] = buf[i];
return true;
}
pb_ostream_t pb_ostream_from_buffer(pb_byte_t *buf, size_t bufsize)
{
pb_ostream_t stream;
#ifdef PB_BUFFER_ONLY
stream.callback = (void*)1; /* Just a marker value */
#else
stream.callback = &buf_write;
#endif
stream.state = buf;
stream.max_size = bufsize;
stream.bytes_written = 0;
#ifndef PB_NO_ERRMSG
stream.errmsg = NULL;
#endif
return stream;
}
bool checkreturn pb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
if (count > 0 && stream->callback != NULL)
{
if (stream->bytes_written + count < stream->bytes_written ||
stream->bytes_written + count > stream->max_size)
{
PB_RETURN_ERROR(stream, "stream full");
}
#ifdef PB_BUFFER_ONLY
if (!buf_write(stream, buf, count))
PB_RETURN_ERROR(stream, "io error");
#else
if (!stream->callback(stream, buf, count))
PB_RETURN_ERROR(stream, "io error");
#endif
}
stream->bytes_written += count;
return true;
}
/*************************
* Encode a single field *
*************************/
/* Read a bool value without causing undefined behavior even if the value
* is invalid. See issue #434 and
* https://stackoverflow.com/questions/27661768/weird-results-for-conditional
*/
static bool safe_read_bool(const void *pSize)
{
const char *p = (const char *)pSize;
size_t i;
for (i = 0; i < sizeof(bool); i++)
{
if (p[i] != 0)
return true;
}
return false;
}
/* Encode a static array. Handles the size calculations and possible packing. */
static bool checkreturn encode_array(pb_ostream_t *stream, pb_field_iter_t *field)
{
pb_size_t i;
pb_size_t count;
#ifndef PB_ENCODE_ARRAYS_UNPACKED
size_t size;
#endif
count = *(pb_size_t*)field->pSize;
if (count == 0)
return true;
if (PB_ATYPE(field->type) != PB_ATYPE_POINTER && count > field->array_size)
PB_RETURN_ERROR(stream, "array max size exceeded");
#ifndef PB_ENCODE_ARRAYS_UNPACKED
/* We always pack arrays if the datatype allows it. */
if (PB_LTYPE(field->type) <= PB_LTYPE_LAST_PACKABLE)
{
if (!pb_encode_tag(stream, PB_WT_STRING, field->tag))
return false;
/* Determine the total size of packed array. */
if (PB_LTYPE(field->type) == PB_LTYPE_FIXED32)
{
size = 4 * (size_t)count;
}
else if (PB_LTYPE(field->type) == PB_LTYPE_FIXED64)
{
size = 8 * (size_t)count;
}
else
{
pb_ostream_t sizestream = PB_OSTREAM_SIZING;
void *pData_orig = field->pData;
for (i = 0; i < count; i++)
{
if (!pb_enc_varint(&sizestream, field))
PB_RETURN_ERROR(stream, PB_GET_ERROR(&sizestream));
field->pData = (char*)field->pData + field->data_size;
}
field->pData = pData_orig;
size = sizestream.bytes_written;
}
if (!pb_encode_varint(stream, (pb_uint64_t)size))
return false;
if (stream->callback == NULL)
return pb_write(stream, NULL, size); /* Just sizing.. */
/* Write the data */
for (i = 0; i < count; i++)
{
if (PB_LTYPE(field->type) == PB_LTYPE_FIXED32 || PB_LTYPE(field->type) == PB_LTYPE_FIXED64)
{
if (!pb_enc_fixed(stream, field))
return false;
}
else
{
if (!pb_enc_varint(stream, field))
return false;
}
field->pData = (char*)field->pData + field->data_size;
}
}
else /* Unpacked fields */
#endif
{
for (i = 0; i < count; i++)
{
/* Normally the data is stored directly in the array entries, but
* for pointer-type string and bytes fields, the array entries are
* actually pointers themselves also. So we have to dereference once
* more to get to the actual data. */
if (PB_ATYPE(field->type) == PB_ATYPE_POINTER &&
(PB_LTYPE(field->type) == PB_LTYPE_STRING ||
PB_LTYPE(field->type) == PB_LTYPE_BYTES))
{
bool status;
void *pData_orig = field->pData;
field->pData = *(void* const*)field->pData;
if (!field->pData)
{
/* Null pointer in array is treated as empty string / bytes */
status = pb_encode_tag_for_field(stream, field) &&
pb_encode_varint(stream, 0);
}
else
{
status = encode_basic_field(stream, field);
}
field->pData = pData_orig;
if (!status)
return false;
}
else
{
if (!encode_basic_field(stream, field))
return false;
}
field->pData = (char*)field->pData + field->data_size;
}
}
return true;
}
/* In proto3, all fields are optional and are only encoded if their value is "non-zero".
* This function implements the check for the zero value. */
static bool checkreturn pb_check_proto3_default_value(const pb_field_iter_t *field)
{
pb_type_t type = field->type;
if (PB_ATYPE(type) == PB_ATYPE_STATIC)
{
if (PB_HTYPE(type) == PB_HTYPE_REQUIRED)
{
/* Required proto2 fields inside proto3 submessage, pretty rare case */
return false;
}
else if (PB_HTYPE(type) == PB_HTYPE_REPEATED)
{
/* Repeated fields inside proto3 submessage: present if count != 0 */
return *(const pb_size_t*)field->pSize == 0;
}
else if (PB_HTYPE(type) == PB_HTYPE_ONEOF)
{
/* Oneof fields */
return *(const pb_size_t*)field->pSize == 0;
}
else if (PB_HTYPE(type) == PB_HTYPE_OPTIONAL && field->pSize != NULL)
{
/* Proto2 optional fields inside proto3 message, or proto3
* submessage fields. */
return safe_read_bool(field->pSize) == false;
}
/* Rest is proto3 singular fields */
if (PB_LTYPE(type) <= PB_LTYPE_LAST_PACKABLE)
{
/* Simple integer / float fields */
pb_size_t i;
const char *p = (const char*)field->pData;
for (i = 0; i < field->data_size; i++)
{
if (p[i] != 0)
{
return false;
}
}
return true;
}
else if (PB_LTYPE(type) == PB_LTYPE_BYTES)
{
const pb_bytes_array_t *bytes = (const pb_bytes_array_t*)field->pData;
return bytes->size == 0;
}
else if (PB_LTYPE(type) == PB_LTYPE_STRING)
{
return *(const char*)field->pData == '\0';
}
else if (PB_LTYPE(type) == PB_LTYPE_FIXED_LENGTH_BYTES)
{
/* Fixed length bytes is only empty if its length is fixed
* as 0. Which would be pretty strange, but we can check
* it anyway. */
return field->data_size == 0;
}
else if (PB_LTYPE_IS_SUBMSG(type))
{
/* Check all fields in the submessage to find if any of them
* are non-zero. The comparison cannot be done byte-per-byte
* because the C struct may contain padding bytes that must
* be skipped. Note that usually proto3 submessages have
* a separate has_field that is checked earlier in this if.
*/
pb_field_iter_t iter;
if (pb_field_iter_begin(&iter, field->submsg_desc, field->pData))
{
do
{
if (!pb_check_proto3_default_value(&iter))
{
return false;
}
} while (pb_field_iter_next(&iter));
}
return true;
}
}
else if (PB_ATYPE(type) == PB_ATYPE_POINTER)
{
return field->pData == NULL;
}
else if (PB_ATYPE(type) == PB_ATYPE_CALLBACK)
{
if (PB_LTYPE(type) == PB_LTYPE_EXTENSION)
{
const pb_extension_t *extension = *(const pb_extension_t* const *)field->pData;
return extension == NULL;
}
else if (field->descriptor->field_callback == pb_default_field_callback)
{
pb_callback_t *pCallback = (pb_callback_t*)field->pData;
return pCallback->funcs.encode == NULL;
}
else
{
return field->descriptor->field_callback == NULL;
}
}
return false; /* Not typically reached, safe default for weird special cases. */
}
/* Encode a field with static or pointer allocation, i.e. one whose data
* is available to the encoder directly. */
static bool checkreturn encode_basic_field(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (!field->pData)
{
/* Missing pointer field */
return true;
}
if (!pb_encode_tag_for_field(stream, field))
return false;
switch (PB_LTYPE(field->type))
{
case PB_LTYPE_BOOL:
return pb_enc_bool(stream, field);
case PB_LTYPE_VARINT:
case PB_LTYPE_UVARINT:
case PB_LTYPE_SVARINT:
return pb_enc_varint(stream, field);
case PB_LTYPE_FIXED32:
case PB_LTYPE_FIXED64:
return pb_enc_fixed(stream, field);
case PB_LTYPE_BYTES:
return pb_enc_bytes(stream, field);
case PB_LTYPE_STRING:
return pb_enc_string(stream, field);
case PB_LTYPE_SUBMESSAGE:
case PB_LTYPE_SUBMSG_W_CB:
return pb_enc_submessage(stream, field);
case PB_LTYPE_FIXED_LENGTH_BYTES:
return pb_enc_fixed_length_bytes(stream, field);
default:
PB_RETURN_ERROR(stream, "invalid field type");
}
}
/* Encode a field with callback semantics. This means that a user function is
* called to provide and encode the actual data. */
static bool checkreturn encode_callback_field(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (field->descriptor->field_callback != NULL)
{
if (!field->descriptor->field_callback(NULL, stream, field))
PB_RETURN_ERROR(stream, "callback error");
}
return true;
}
/* Encode a single field of any callback, pointer or static type. */
static bool checkreturn encode_field(pb_ostream_t *stream, pb_field_iter_t *field)
{
/* Check field presence */
if (PB_HTYPE(field->type) == PB_HTYPE_ONEOF)
{
if (*(const pb_size_t*)field->pSize != field->tag)
{
/* Different type oneof field */
return true;
}
}
else if (PB_HTYPE(field->type) == PB_HTYPE_OPTIONAL)
{
if (field->pSize)
{
if (safe_read_bool(field->pSize) == false)
{
/* Missing optional field */
return true;
}
}
else if (PB_ATYPE(field->type) == PB_ATYPE_STATIC)
{
/* Proto3 singular field */
if (pb_check_proto3_default_value(field))
return true;
}
}
if (!field->pData)
{
if (PB_HTYPE(field->type) == PB_HTYPE_REQUIRED)
PB_RETURN_ERROR(stream, "missing required field");
/* Pointer field set to NULL */
return true;
}
/* Then encode field contents */
if (PB_ATYPE(field->type) == PB_ATYPE_CALLBACK)
{
return encode_callback_field(stream, field);
}
else if (PB_HTYPE(field->type) == PB_HTYPE_REPEATED)
{
return encode_array(stream, field);
}
else
{
return encode_basic_field(stream, field);
}
}
/* Default handler for extension fields. Expects to have a pb_msgdesc_t
* pointer in the extension->type->arg field, pointing to a message with
* only one field in it. */
static bool checkreturn default_extension_encoder(pb_ostream_t *stream, const pb_extension_t *extension)
{
pb_field_iter_t iter;
if (!pb_field_iter_begin_extension_const(&iter, extension))
PB_RETURN_ERROR(stream, "invalid extension");
return encode_field(stream, &iter);
}
/* Walk through all the registered extensions and give them a chance
* to encode themselves. */
static bool checkreturn encode_extension_field(pb_ostream_t *stream, const pb_field_iter_t *field)
{
const pb_extension_t *extension = *(const pb_extension_t* const *)field->pData;
while (extension)
{
bool status;
if (extension->type->encode)
status = extension->type->encode(stream, extension);
else
status = default_extension_encoder(stream, extension);
if (!status)
return false;
extension = extension->next;
}
return true;
}
/*********************
* Encode all fields *
*********************/
bool checkreturn pb_encode(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct)
{
pb_field_iter_t iter;
if (!pb_field_iter_begin_const(&iter, fields, src_struct))
return true; /* Empty message type */
do {
if (PB_LTYPE(iter.type) == PB_LTYPE_EXTENSION)
{
/* Special case for the extension field placeholder */
if (!encode_extension_field(stream, &iter))
return false;
}
else
{
/* Regular field */
if (!encode_field(stream, &iter))
return false;
}
} while (pb_field_iter_next(&iter));
return true;
}
bool checkreturn pb_encode_ex(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct, unsigned int flags)
{
if ((flags & PB_ENCODE_DELIMITED) != 0)
{
return pb_encode_submessage(stream, fields, src_struct);
}
else if ((flags & PB_ENCODE_NULLTERMINATED) != 0)
{
const pb_byte_t zero = 0;
if (!pb_encode(stream, fields, src_struct))
return false;
return pb_write(stream, &zero, 1);
}
else
{
return pb_encode(stream, fields, src_struct);
}
}
bool pb_get_encoded_size(size_t *size, const pb_msgdesc_t *fields, const void *src_struct)
{
pb_ostream_t stream = PB_OSTREAM_SIZING;
if (!pb_encode(&stream, fields, src_struct))
return false;
*size = stream.bytes_written;
return true;
}
/********************
* Helper functions *
********************/
/* This function avoids 64-bit shifts as they are quite slow on many platforms. */
static bool checkreturn pb_encode_varint_32(pb_ostream_t *stream, uint32_t low, uint32_t high)
{
size_t i = 0;
pb_byte_t buffer[10];
pb_byte_t byte = (pb_byte_t)(low & 0x7F);
low >>= 7;
while (i < 4 && (low != 0 || high != 0))
{
byte |= 0x80;
buffer[i++] = byte;
byte = (pb_byte_t)(low & 0x7F);
low >>= 7;
}
if (high)
{
byte = (pb_byte_t)(byte | ((high & 0x07) << 4));
high >>= 3;
while (high)
{
byte |= 0x80;
buffer[i++] = byte;
byte = (pb_byte_t)(high & 0x7F);
high >>= 7;
}
}
buffer[i++] = byte;
return pb_write(stream, buffer, i);
}
bool checkreturn pb_encode_varint(pb_ostream_t *stream, pb_uint64_t value)
{
if (value <= 0x7F)
{
/* Fast path: single byte */
pb_byte_t byte = (pb_byte_t)value;
return pb_write(stream, &byte, 1);
}
else
{
#ifdef PB_WITHOUT_64BIT
return pb_encode_varint_32(stream, value, 0);
#else
return pb_encode_varint_32(stream, (uint32_t)value, (uint32_t)(value >> 32));
#endif
}
}
bool checkreturn pb_encode_svarint(pb_ostream_t *stream, pb_int64_t value)
{
pb_uint64_t zigzagged;
if (value < 0)
zigzagged = ~((pb_uint64_t)value << 1);
else
zigzagged = (pb_uint64_t)value << 1;
return pb_encode_varint(stream, zigzagged);
}
bool checkreturn pb_encode_fixed32(pb_ostream_t *stream, const void *value)
{
uint32_t val = *(const uint32_t*)value;
pb_byte_t bytes[4];
bytes[0] = (pb_byte_t)(val & 0xFF);
bytes[1] = (pb_byte_t)((val >> 8) & 0xFF);
bytes[2] = (pb_byte_t)((val >> 16) & 0xFF);
bytes[3] = (pb_byte_t)((val >> 24) & 0xFF);
return pb_write(stream, bytes, 4);
}
#ifndef PB_WITHOUT_64BIT
bool checkreturn pb_encode_fixed64(pb_ostream_t *stream, const void *value)
{
uint64_t val = *(const uint64_t*)value;
pb_byte_t bytes[8];
bytes[0] = (pb_byte_t)(val & 0xFF);
bytes[1] = (pb_byte_t)((val >> 8) & 0xFF);
bytes[2] = (pb_byte_t)((val >> 16) & 0xFF);
bytes[3] = (pb_byte_t)((val >> 24) & 0xFF);
bytes[4] = (pb_byte_t)((val >> 32) & 0xFF);
bytes[5] = (pb_byte_t)((val >> 40) & 0xFF);
bytes[6] = (pb_byte_t)((val >> 48) & 0xFF);
bytes[7] = (pb_byte_t)((val >> 56) & 0xFF);
return pb_write(stream, bytes, 8);
}
#endif
bool checkreturn pb_encode_tag(pb_ostream_t *stream, pb_wire_type_t wiretype, uint32_t field_number)
{
pb_uint64_t tag = ((pb_uint64_t)field_number << 3) | wiretype;
return pb_encode_varint(stream, tag);
}
bool pb_encode_tag_for_field ( pb_ostream_t* stream, const pb_field_iter_t* field )
{
pb_wire_type_t wiretype;
switch (PB_LTYPE(field->type))
{
case PB_LTYPE_BOOL:
case PB_LTYPE_VARINT:
case PB_LTYPE_UVARINT:
case PB_LTYPE_SVARINT:
wiretype = PB_WT_VARINT;
break;
case PB_LTYPE_FIXED32:
wiretype = PB_WT_32BIT;
break;
case PB_LTYPE_FIXED64:
wiretype = PB_WT_64BIT;
break;
case PB_LTYPE_BYTES:
case PB_LTYPE_STRING:
case PB_LTYPE_SUBMESSAGE:
case PB_LTYPE_SUBMSG_W_CB:
case PB_LTYPE_FIXED_LENGTH_BYTES:
wiretype = PB_WT_STRING;
break;
default:
PB_RETURN_ERROR(stream, "invalid field type");
}
return pb_encode_tag(stream, wiretype, field->tag);
}
bool checkreturn pb_encode_string(pb_ostream_t *stream, const pb_byte_t *buffer, size_t size)
{
if (!pb_encode_varint(stream, (pb_uint64_t)size))
return false;
return pb_write(stream, buffer, size);
}
bool checkreturn pb_encode_submessage(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct)
{
/* First calculate the message size using a non-writing substream. */
pb_ostream_t substream = PB_OSTREAM_SIZING;
size_t size;
bool status;
if (!pb_encode(&substream, fields, src_struct))
{
#ifndef PB_NO_ERRMSG
stream->errmsg = substream.errmsg;
#endif
return false;
}
size = substream.bytes_written;
if (!pb_encode_varint(stream, (pb_uint64_t)size))
return false;
if (stream->callback == NULL)
return pb_write(stream, NULL, size); /* Just sizing */
if (stream->bytes_written + size > stream->max_size)
PB_RETURN_ERROR(stream, "stream full");
/* Use a substream to verify that a callback doesn't write more than
* what it did the first time. */
substream.callback = stream->callback;
substream.state = stream->state;
substream.max_size = size;
substream.bytes_written = 0;
#ifndef PB_NO_ERRMSG
substream.errmsg = NULL;
#endif
status = pb_encode(&substream, fields, src_struct);
stream->bytes_written += substream.bytes_written;
stream->state = substream.state;
#ifndef PB_NO_ERRMSG
stream->errmsg = substream.errmsg;
#endif
if (substream.bytes_written != size)
PB_RETURN_ERROR(stream, "submsg size changed");
return status;
}
/* Field encoders */
static bool checkreturn pb_enc_bool(pb_ostream_t *stream, const pb_field_iter_t *field)
{
uint32_t value = safe_read_bool(field->pData) ? 1 : 0;
PB_UNUSED(field);
return pb_encode_varint(stream, value);
}
static bool checkreturn pb_enc_varint(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (PB_LTYPE(field->type) == PB_LTYPE_UVARINT)
{
/* Perform unsigned integer extension */
pb_uint64_t value = 0;
if (field->data_size == sizeof(uint_least8_t))
value = *(const uint_least8_t*)field->pData;
else if (field->data_size == sizeof(uint_least16_t))
value = *(const uint_least16_t*)field->pData;
else if (field->data_size == sizeof(uint32_t))
value = *(const uint32_t*)field->pData;
else if (field->data_size == sizeof(pb_uint64_t))
value = *(const pb_uint64_t*)field->pData;
else
PB_RETURN_ERROR(stream, "invalid data_size");
return pb_encode_varint(stream, value);
}
else
{
/* Perform signed integer extension */
pb_int64_t value = 0;
if (field->data_size == sizeof(int_least8_t))
value = *(const int_least8_t*)field->pData;
else if (field->data_size == sizeof(int_least16_t))
value = *(const int_least16_t*)field->pData;
else if (field->data_size == sizeof(int32_t))
value = *(const int32_t*)field->pData;
else if (field->data_size == sizeof(pb_int64_t))
value = *(const pb_int64_t*)field->pData;
else
PB_RETURN_ERROR(stream, "invalid data_size");
if (PB_LTYPE(field->type) == PB_LTYPE_SVARINT)
return pb_encode_svarint(stream, value);
#ifdef PB_WITHOUT_64BIT
else if (value < 0)
return pb_encode_varint_32(stream, (uint32_t)value, (uint32_t)-1);
#endif
else
return pb_encode_varint(stream, (pb_uint64_t)value);
}
}
static bool checkreturn pb_enc_fixed(pb_ostream_t *stream, const pb_field_iter_t *field)
{
#ifdef PB_CONVERT_DOUBLE_FLOAT
if (field->data_size == sizeof(float) && PB_LTYPE(field->type) == PB_LTYPE_FIXED64)
{
return pb_encode_float_as_double(stream, *(float*)field->pData);
}
#endif
if (field->data_size == sizeof(uint32_t))
{
return pb_encode_fixed32(stream, field->pData);
}
#ifndef PB_WITHOUT_64BIT
else if (field->data_size == sizeof(uint64_t))
{
return pb_encode_fixed64(stream, field->pData);
}
#endif
else
{
PB_RETURN_ERROR(stream, "invalid data_size");
}
}
static bool checkreturn pb_enc_bytes(pb_ostream_t *stream, const pb_field_iter_t *field)
{
const pb_bytes_array_t *bytes = NULL;
bytes = (const pb_bytes_array_t*)field->pData;
if (bytes == NULL)
{
/* Treat null pointer as an empty bytes field */
return pb_encode_string(stream, NULL, 0);
}
if (PB_ATYPE(field->type) == PB_ATYPE_STATIC &&
bytes->size > field->data_size - offsetof(pb_bytes_array_t, bytes))
{
PB_RETURN_ERROR(stream, "bytes size exceeded");
}
return pb_encode_string(stream, bytes->bytes, (size_t)bytes->size);
}
static bool checkreturn pb_enc_string(pb_ostream_t *stream, const pb_field_iter_t *field)
{
size_t size = 0;
size_t max_size = (size_t)field->data_size;
const char *str = (const char*)field->pData;
if (PB_ATYPE(field->type) == PB_ATYPE_POINTER)
{
max_size = (size_t)-1;
}
else
{
/* pb_dec_string() assumes string fields end with a null
* terminator when the type isn't PB_ATYPE_POINTER, so we
* shouldn't allow more than max-1 bytes to be written to
* allow space for the null terminator.
*/
if (max_size == 0)
PB_RETURN_ERROR(stream, "zero-length string");
max_size -= 1;
}
if (str == NULL)
{
size = 0; /* Treat null pointer as an empty string */
}
else
{
const char *p = str;
/* strnlen() is not always available, so just use a loop */
while (size < max_size && *p != '\0')
{
size++;
p++;
}
if (*p != '\0')
{
PB_RETURN_ERROR(stream, "unterminated string");
}
}
#ifdef PB_VALIDATE_UTF8
if (!pb_validate_utf8(str))
PB_RETURN_ERROR(stream, "invalid utf8");
#endif
return pb_encode_string(stream, (const pb_byte_t*)str, size);
}
static bool checkreturn pb_enc_submessage(pb_ostream_t *stream, const pb_field_iter_t *field)
{
if (field->submsg_desc == NULL)
PB_RETURN_ERROR(stream, "invalid field descriptor");
if (PB_LTYPE(field->type) == PB_LTYPE_SUBMSG_W_CB && field->pSize != NULL)
{
/* Message callback is stored right before pSize. */
pb_callback_t *callback = (pb_callback_t*)field->pSize - 1;
if (callback->funcs.encode)
{
if (!callback->funcs.encode(stream, field, &callback->arg))
return false;
}
}
return pb_encode_submessage(stream, field->submsg_desc, field->pData);
}
static bool checkreturn pb_enc_fixed_length_bytes(pb_ostream_t *stream, const pb_field_iter_t *field)
{
return pb_encode_string(stream, (const pb_byte_t*)field->pData, (size_t)field->data_size);
}
#ifdef PB_CONVERT_DOUBLE_FLOAT
bool pb_encode_float_as_double(pb_ostream_t *stream, float value)
{
union { float f; uint32_t i; } in;
uint_least8_t sign;
int exponent;
uint64_t mantissa;
in.f = value;
/* Decompose input value */
sign = (uint_least8_t)((in.i >> 31) & 1);
exponent = (int)((in.i >> 23) & 0xFF) - 127;
mantissa = in.i & 0x7FFFFF;
if (exponent == 128)
{
/* Special value (NaN etc.) */
exponent = 1024;
}
else if (exponent == -127)
{
if (!mantissa)
{
/* Zero */
exponent = -1023;
}
else
{
/* Denormalized */
mantissa <<= 1;
while (!(mantissa & 0x800000))
{
mantissa <<= 1;
exponent--;
}
mantissa &= 0x7FFFFF;
}
}
/* Combine fields */
mantissa <<= 29;
mantissa |= (uint64_t)(exponent + 1023) << 52;
mantissa |= (uint64_t)sign << 63;
return pb_encode_fixed64(stream, &mantissa);
}
#endif

View File

@ -0,0 +1,185 @@
/* pb_encode.h: Functions to encode protocol buffers. Depends on pb_encode.c.
* The main function is pb_encode. You also need an output stream, and the
* field descriptions created by nanopb_generator.py.
*/
#ifndef PB_ENCODE_H_INCLUDED
#define PB_ENCODE_H_INCLUDED
#include "pb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Structure for defining custom output streams. You will need to provide
* a callback function to write the bytes to your storage, which can be
* for example a file or a network socket.
*
* The callback must conform to these rules:
*
* 1) Return false on IO errors. This will cause encoding to abort.
* 2) You can use state to store your own data (e.g. buffer pointer).
* 3) pb_write will update bytes_written after your callback runs.
* 4) Substreams will modify max_size and bytes_written. Don't use them
* to calculate any pointers.
*/
struct pb_ostream_s
{
#ifdef PB_BUFFER_ONLY
/* Callback pointer is not used in buffer-only configuration.
* Having an int pointer here allows binary compatibility but
* gives an error if someone tries to assign callback function.
* Also, NULL pointer marks a 'sizing stream' that does not
* write anything.
*/
int *callback;
#else
bool (*callback)(pb_ostream_t *stream, const pb_byte_t *buf, size_t count);
#endif
void *state; /* Free field for use by callback implementation. */
size_t max_size; /* Limit number of output bytes written (or use SIZE_MAX). */
size_t bytes_written; /* Number of bytes written so far. */
#ifndef PB_NO_ERRMSG
const char *errmsg;
#endif
};
/***************************
* Main encoding functions *
***************************/
/* Encode a single protocol buffers message from C structure into a stream.
* Returns true on success, false on any failure.
* The actual struct pointed to by src_struct must match the description in fields.
* All required fields in the struct are assumed to have been filled in.
*
* Example usage:
* MyMessage msg = {};
* uint8_t buffer[64];
* pb_ostream_t stream;
*
* msg.field1 = 42;
* stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
* pb_encode(&stream, MyMessage_fields, &msg);
*/
bool pb_encode(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct);
/* Extended version of pb_encode, with several options to control the
* encoding process:
*
* PB_ENCODE_DELIMITED: Prepend the length of message as a varint.
* Corresponds to writeDelimitedTo() in Google's
* protobuf API.
*
* PB_ENCODE_NULLTERMINATED: Append a null byte to the message for termination.
* NOTE: This behaviour is not supported in most other
* protobuf implementations, so PB_ENCODE_DELIMITED
* is a better option for compatibility.
*/
#define PB_ENCODE_DELIMITED 0x02U
#define PB_ENCODE_NULLTERMINATED 0x04U
bool pb_encode_ex(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct, unsigned int flags);
/* Defines for backwards compatibility with code written before nanopb-0.4.0 */
#define pb_encode_delimited(s,f,d) pb_encode_ex(s,f,d, PB_ENCODE_DELIMITED)
#define pb_encode_nullterminated(s,f,d) pb_encode_ex(s,f,d, PB_ENCODE_NULLTERMINATED)
/* Encode the message to get the size of the encoded data, but do not store
* the data. */
bool pb_get_encoded_size(size_t *size, const pb_msgdesc_t *fields, const void *src_struct);
/**************************************
* Functions for manipulating streams *
**************************************/
/* Create an output stream for writing into a memory buffer.
* The number of bytes written can be found in stream.bytes_written after
* encoding the message.
*
* Alternatively, you can use a custom stream that writes directly to e.g.
* a file or a network socket.
*/
pb_ostream_t pb_ostream_from_buffer(pb_byte_t *buf, size_t bufsize);
/* Pseudo-stream for measuring the size of a message without actually storing
* the encoded data.
*
* Example usage:
* MyMessage msg = {};
* pb_ostream_t stream = PB_OSTREAM_SIZING;
* pb_encode(&stream, MyMessage_fields, &msg);
* printf("Message size is %d\n", stream.bytes_written);
*/
#ifndef PB_NO_ERRMSG
#define PB_OSTREAM_SIZING {0,0,0,0,0}
#else
#define PB_OSTREAM_SIZING {0,0,0,0}
#endif
/* Function to write into a pb_ostream_t stream. You can use this if you need
* to append or prepend some custom headers to the message.
*/
bool pb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count);
/************************************************
* Helper functions for writing field callbacks *
************************************************/
/* Encode field header based on type and field number defined in the field
* structure. Call this from the callback before writing out field contents. */
bool pb_encode_tag_for_field(pb_ostream_t *stream, const pb_field_iter_t *field);
/* Encode field header by manually specifing wire type. You need to use this
* if you want to write out packed arrays from a callback field. */
bool pb_encode_tag(pb_ostream_t *stream, pb_wire_type_t wiretype, uint32_t field_number);
/* Encode an integer in the varint format.
* This works for bool, enum, int32, int64, uint32 and uint64 field types. */
#ifndef PB_WITHOUT_64BIT
bool pb_encode_varint(pb_ostream_t *stream, uint64_t value);
#else
bool pb_encode_varint(pb_ostream_t *stream, uint32_t value);
#endif
/* Encode an integer in the zig-zagged svarint format.
* This works for sint32 and sint64. */
#ifndef PB_WITHOUT_64BIT
bool pb_encode_svarint(pb_ostream_t *stream, int64_t value);
#else
bool pb_encode_svarint(pb_ostream_t *stream, int32_t value);
#endif
/* Encode a string or bytes type field. For strings, pass strlen(s) as size. */
bool pb_encode_string(pb_ostream_t *stream, const pb_byte_t *buffer, size_t size);
/* Encode a fixed32, sfixed32 or float value.
* You need to pass a pointer to a 4-byte wide C variable. */
bool pb_encode_fixed32(pb_ostream_t *stream, const void *value);
#ifndef PB_WITHOUT_64BIT
/* Encode a fixed64, sfixed64 or double value.
* You need to pass a pointer to a 8-byte wide C variable. */
bool pb_encode_fixed64(pb_ostream_t *stream, const void *value);
#endif
#ifdef PB_CONVERT_DOUBLE_FLOAT
/* Encode a float value so that it appears like a double in the encoded
* message. */
bool pb_encode_float_as_double(pb_ostream_t *stream, float value);
#endif
/* Encode a submessage field.
* You need to pass the pb_field_t array and pointer to struct, just like
* with pb_encode(). This internally encodes the submessage twice, first to
* calculate message size and then to actually write it out.
*/
bool pb_encode_submessage(pb_ostream_t *stream, const pb_msgdesc_t *fields, const void *src_struct);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif

View File

@ -91,8 +91,27 @@ void ssd1306_clear_line(uint8_t i2address, uint8_t line, bool invert);
*/ */
void ssd1306_clear(uint8_t i2address); void ssd1306_clear(uint8_t i2address);
/** /**
* @brief write text to display * @brief set display on or offf
*
* @param[in] i2address I2C address of SSD1306
* @param[in] on true if display on, false if display off
*/
void ssd1306_on(uint8_t i2address, bool on);
/**
* @brief write text to display line at starting column
*
* @param[in] i2address I2C address of SSD1306
* @param[in] text text to display
* @param[in] line the line to write to
* @param[in] offset number of offset chars to start
*/
void ssd1306_text_line_column(uint8_t i2address, char *text, uint8_t line, uint8_t offset, bool invert);
/**
* @brief write text to display line
* *
* @param[in] i2address I2C address of SSD1306 * @param[in] i2address I2C address of SSD1306
* @param[in] text text to display * @param[in] text text to display

View File

@ -80,7 +80,7 @@ void ssd1306_start(uint8_t i2address)
// Turn the Display ON // Turn the Display ON
i2c_master_write_byte(cmd, SSD1306_CMD_ON, true); i2c_master_write_byte(cmd, SSD1306_CMD_ON, true);
i2c_master_stop(cmd); i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS)); ESP_ERROR_CHECK_WITHOUT_ABORT(i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd); i2c_cmd_link_delete(cmd);
} }
@ -101,7 +101,7 @@ void ssd1306_init_data(uint8_t i2address)
i2c_master_write_byte(cmd, SSD1306_CMD_PAGE, true); i2c_master_write_byte(cmd, SSD1306_CMD_PAGE, true);
i2c_master_stop(cmd); i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS)); ESP_ERROR_CHECK_WITHOUT_ABORT(i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd); i2c_cmd_link_delete(cmd);
} }
@ -144,8 +144,46 @@ void ssd1306_clear(uint8_t i2address)
} }
} }
void ssd1306_text_line(uint8_t i2address, char *text, uint8_t line, bool invert) void ssd1306_on(uint8_t i2address, bool on)
{ {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
// Begin the I2C comm with SSD1306's address (SLA+Write)
i2c_master_write_byte(cmd, (i2address << 1) | I2C_MASTER_WRITE, true);
// Tell the SSD1306 that a command stream is incoming
i2c_master_write_byte(cmd, SSD1306_CONTROL_CMD_STREAM, true);
if (on)
{
// Turn the Display ON
i2c_master_write_byte(cmd, SSD1306_CMD_ON, true);
}
else
{
// Turn the Display OFF
i2c_master_write_byte(cmd, SSD1306_CMD_OFF, true);
}
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);
}
void ssd1306_text_line_column(uint8_t i2address, char *text, uint8_t line, uint8_t offset, bool invert)
{
uint8_t font_width = sizeof(ascii_font_5x8[0]);
uint8_t column = offset * font_width;
if (column > SSD1306_COLUMNS)
{
column = 0;
}
size_t columns = strlen(text) * font_width;
if (columns > (SSD1306_COLUMNS - column))
{
columns = (SSD1306_COLUMNS - column);
}
ssd1306_init_data(i2address); ssd1306_init_data(i2address);
i2c_cmd_handle_t cmd; i2c_cmd_handle_t cmd;
@ -155,24 +193,23 @@ void ssd1306_text_line(uint8_t i2address, char *text, uint8_t line, bool invert)
i2c_master_write_byte(cmd, (i2address << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, (i2address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, SSD1306_CONTROL_CMD_STREAM, true); i2c_master_write_byte(cmd, SSD1306_CONTROL_CMD_STREAM, true);
i2c_master_write_byte(cmd, SSD1306_CMD_COLUMN_LOW, true); i2c_master_write_byte(cmd, SSD1306_CMD_COLUMN_LOW | (column & 0XF), true);
i2c_master_write_byte(cmd, SSD1306_CMD_COLUMN_HIGH, true); i2c_master_write_byte(cmd, SSD1306_CMD_COLUMN_HIGH | (column >> 4), true);
i2c_master_write_byte(cmd, SSD1306_CMD_PAGE | line, true); i2c_master_write_byte(cmd, SSD1306_CMD_PAGE | line, true);
i2c_master_stop(cmd); i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS); i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd); i2c_cmd_link_delete(cmd);
uint8_t *linedata = calloc(SSD1306_COLUMNS, sizeof(uint8_t)); uint8_t *linedata = calloc(columns, sizeof(uint8_t));
uint8_t font_width = sizeof(ascii_font_5x8[0]); for (uint8_t i = 0; i < (columns / font_width); i++)
for (uint8_t i = 0; i < strlen(text); i++)
{ {
memcpy(&linedata[i * font_width], ascii_font_5x8[(uint8_t)text[i]], font_width); memcpy(&linedata[i * font_width], ascii_font_5x8[(uint8_t)text[i]], font_width);
} }
if (invert) if (invert)
{ {
for (uint8_t i = 0; i < SSD1306_COLUMNS; i++) for (uint8_t i = 0; i < columns; i++)
{ {
linedata[i] = ~linedata[i]; linedata[i] = ~linedata[i];
} }
@ -183,7 +220,7 @@ void ssd1306_text_line(uint8_t i2address, char *text, uint8_t line, bool invert)
i2c_master_write_byte(cmd, (i2address << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, (i2address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, SSD1306_CONTROL_DATA_STREAM, true); i2c_master_write_byte(cmd, SSD1306_CONTROL_DATA_STREAM, true);
i2c_master_write(cmd, linedata, SSD1306_COLUMNS, true); i2c_master_write(cmd, linedata, columns, true);
i2c_master_stop(cmd); i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS); i2c_master_cmd_begin(I2C_NUM_0, cmd, 10 / portTICK_PERIOD_MS);
@ -191,3 +228,8 @@ void ssd1306_text_line(uint8_t i2address, char *text, uint8_t line, bool invert)
free(linedata); free(linedata);
} }
void ssd1306_text_line(uint8_t i2address, char *text, uint8_t line, bool invert)
{
ssd1306_text_line_column(i2address, text, line, 0, invert);
}

View File

@ -22,34 +22,151 @@
#include "ena.h" #include "ena.h"
#include "ena-storage.h" #include "ena-storage.h"
#include "ena-beacons.h"
#include "ena-exposure.h"
#include "ena-interface.h" #include "ena-interface.h"
#include "ena-interface-menu.h" #include "ena-interface-menu.h"
#include "ena-interface-datetime.h"
#include "ssd1306.h" #include "ssd1306.h"
#include "ds3231.h"
#include "sdkconfig.h" #include "sdkconfig.h"
static time_t curtime;
void interface_display_time(void *pvParameter)
{
static char *curtime_text;
static struct tm rtc_time;
static bool edit_invert = false;
while (1)
{
curtime = time(NULL);
localtime_r(&curtime, &rtc_time);
curtime_text = asctime(&rtc_time);
ssd1306_text_line(SSD1306_ADDRESS, curtime_text, 0, false);
gmtime_r(&curtime, &rtc_time);
curtime_text = asctime(&rtc_time);
ssd1306_text_line(SSD1306_ADDRESS, curtime_text, 1, false);
if (ena_interface_get_state() == ENA_INTERFACE_STATE_SET_DATETIME)
{
edit_invert = !edit_invert;
ds3231_set_time(&rtc_time);
char edit_year[4] = "";
char edit_month[3] = "";
char edit_day[2] = "";
char edit_hour[2] = "";
char edit_minute[2] = "";
char edit_second[2] = "";
switch (ena_interface_datetime_state())
{
case ENA_INTERFACE_DATETIME_STATE_YEAR:
memcpy(&edit_year, &curtime_text[20], 4);
ssd1306_text_line_column(SSD1306_ADDRESS, edit_year, 0, 20, edit_invert);
break;
case ENA_INTERFACE_DATETIME_STATE_MONTH:
memcpy(&edit_month, &curtime_text[4], 3);
ssd1306_text_line_column(SSD1306_ADDRESS, edit_month, 0, 4, edit_invert);
break;
case ENA_INTERFACE_DATETIME_STATE_DAY:
memcpy(&edit_day, &curtime_text[8], 2);
ssd1306_text_line_column(SSD1306_ADDRESS, edit_day, 0, 8, edit_invert);
break;
case ENA_INTERFACE_DATETIME_STATE_HOUR:
memcpy(&edit_hour, &curtime_text[11], 2);
ssd1306_text_line_column(SSD1306_ADDRESS, edit_hour, 0, 11, edit_invert);
break;
case ENA_INTERFACE_DATETIME_STATE_MINUTE:
memcpy(&edit_minute, &curtime_text[14], 2);
ssd1306_text_line_column(SSD1306_ADDRESS, edit_minute, 0, 14, edit_invert);
break;
case ENA_INTERFACE_DATETIME_STATE_SECONDS:
memcpy(&edit_second[0], &curtime_text[17], 2);
ssd1306_text_line_column(SSD1306_ADDRESS, edit_second, 0, 17, edit_invert);
break;
}
}
vTaskDelay(500 / portTICK_PERIOD_MS);
}
}
void interface_display_status(void *pvParameter)
{
static bool get_status = true;
while (1)
{
if (ena_interface_get_state() == ENA_INTERFACE_STATE_STATUS)
{
if (get_status)
{
ena_exposure_summary_t summary;
ena_exposure_summary(ena_exposure_default_config(), &summary);
char buffer[23];
sprintf(buffer, "Days: %d", summary.days_since_last_exposure);
ssd1306_text_line(SSD1306_ADDRESS, buffer, 3, false);
sprintf(buffer, "Exposures: %d", summary.num_exposures);
ssd1306_text_line(SSD1306_ADDRESS, buffer, 4, false);
sprintf(buffer, "Score: %d, Max: %d", summary.risk_score_sum, summary.max_risk_score);
ssd1306_text_line(SSD1306_ADDRESS, buffer, 5, false);
get_status = false;
}
}
else if (!get_status)
{
ssd1306_clear_line(SSD1306_ADDRESS, 2, false);
ssd1306_clear_line(SSD1306_ADDRESS, 3, false);
ssd1306_clear_line(SSD1306_ADDRESS, 4, false);
get_status = true;
}
vTaskDelay(500 / portTICK_PERIOD_MS);
}
}
void interface_display_idle(void *pvParameter)
{
static bool set_status = true;
while (1)
{
if (ena_interface_get_state() == ENA_INTERFACE_STATE_IDLE)
{
if (set_status)
{
ssd1306_on(SSD1306_ADDRESS, false);
set_status = false;
}
}
else if (!set_status)
{
ssd1306_on(SSD1306_ADDRESS, true);
set_status = true;
}
vTaskDelay(500 / portTICK_PERIOD_MS);
}
}
void app_main(void) void app_main(void)
{ {
// DEBUG set time struct tm rtc_time;
struct timeval tv = {1594843200, 0}; // current hardcoded timestamp ¯\_(ツ)_/¯ ds3231_get_time(&rtc_time);
curtime = mktime(&rtc_time);
struct timeval tv = {0};
tv.tv_sec = curtime;
settimeofday(&tv, NULL); settimeofday(&tv, NULL);
esp_log_level_set(ENA_STORAGE_LOG, ESP_LOG_INFO); esp_log_level_set(ENA_STORAGE_LOG, ESP_LOG_INFO);
setenv("TZ", "UTC-2", 1);
tzset();
ssd1306_start(SSD1306_ADDRESS); ssd1306_start(SSD1306_ADDRESS);
ssd1306_clear(SSD1306_ADDRESS); ssd1306_clear(SSD1306_ADDRESS);
// TODO
ssd1306_text_line(SSD1306_ADDRESS, " TODO TODO", 0, false);
ssd1306_text_line(SSD1306_ADDRESS, " TODO", 1, true);
ssd1306_text_line(SSD1306_ADDRESS, " TODO TODO", 2, false);
ssd1306_text_line(SSD1306_ADDRESS, " TODO", 3, true);
ssd1306_text_line(SSD1306_ADDRESS, " TODO TODO", 4, false);
ssd1306_text_line(SSD1306_ADDRESS, " TODO", 5, true);
ssd1306_text_line(SSD1306_ADDRESS, " TODO TODO", 6, false);
ssd1306_text_line(SSD1306_ADDRESS, " TODO", 7, true);
ena_interface_start(); ena_interface_start();
ena_interface_menu_start(); ena_interface_menu_start();
ena_start(); ena_start();
xTaskCreate(&interface_display_time, "interface_display_time", 4096, NULL, 5, NULL);
xTaskCreate(&interface_display_status, "interface_display_status", 4096, NULL, 5, NULL);
xTaskCreate(&interface_display_idle, "interface_display_idle", 4096, NULL, 5, NULL);
} }